Featured Research

from universities, journals, and other organizations

Pressable Photonic Crystals Produce Full-colour Fingerprints And Promise Enhanced Security

Date:
March 15, 2006
Source:
University of Toronto
Summary:
In the future, law enforcement officials may take full-colour fingerprints using new technology developed by a University of Toronto-led team of international researchers.

In the future, law enforcement officials may take full-colour fingerprints using new technology developed by a University of Toronto-led team of international researchers.

Far from the basic black-and-white fingerprints collected today, the new technology would use elastic photonic crystals to capture data-rich fingerprints in multiple colours, but the fingerprinting technique is just one potential application for the new technology. A paper on the new research is featured on the cover of the current issue of the journal Nature Materials.

"You can elastically deform these crystals and produce different colours," says lead author Andrι Arsenault, a PhD candidate in the laboratory of Geoffrey Ozin, a University Professor in the Department of Chemistry and a Canada Research Chair in materials chemistry.

Photonic crystals are a relatively new development in the scientific quest to control light. Ozin's lab first created photonic crystals in 2002, using spherical particles of silica mere micrometres in diameter that self-assemble into neat layers, creating what's known as an opal. After filling the space between the spheres with silicon, they used acid etching to remove the silica balls. This left an ordered sponge of air bubbles in silicon known as an inverse opal. This photonic crystal material, the first of its kind, did indeed trap light. These photonic crystals can produce colour based on how an electromagnetic wave interacts with the structure -- meaning that it could be tuned to produce any colour.

In the new study, the team injected an elastic compound between the spheres, which were then etched away, leaving an orderly and compressible elastic foam that can be transferred onto virtually any surface, such as glass, metal or plastic. The material changes colour based on how far the spheres are separated.

"The material we have is very, very thin," Arsenault says. "We can coat it onto any surface we want." If the foam is compressed, it alters the lattice dimensions, changing the wavelength of light that it produces. The team demonstrated the fingerprint application, using Arsenault's finger, and produced both still images and a video of the process, which captures detailed information about pressure patterns and surface ridges that may not be visible to the naked eye.

Taking it one step further, Arsenault made a rubber replica of his fingertip, which might fool a traditional fingerprint scan. "If you press the rubber replica into the material, the pressure impressions that you get are very different," he says. "The lines are much sharper, because the material is less soft. From the standpoint of biometrics, this could provide better security."

Arsenault says the technology could be used not only for colour fingerprints, but in sensors for air-bag release mechanisms in cars, strain and torque sensors on support beams of high-rise buildings and in laser sources. The study was funded by the Natural Sciences and Engineering Research Council of Canada, the University of Toronto, EC NoE Phoremost and Deutsche Forschungsgemeinschaft.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "Pressable Photonic Crystals Produce Full-colour Fingerprints And Promise Enhanced Security." ScienceDaily. ScienceDaily, 15 March 2006. <www.sciencedaily.com/releases/2006/03/060314232920.htm>.
University of Toronto. (2006, March 15). Pressable Photonic Crystals Produce Full-colour Fingerprints And Promise Enhanced Security. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2006/03/060314232920.htm
University of Toronto. "Pressable Photonic Crystals Produce Full-colour Fingerprints And Promise Enhanced Security." ScienceDaily. www.sciencedaily.com/releases/2006/03/060314232920.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins