Featured Research

from universities, journals, and other organizations

Evolution Of 'Irreducible Complexity' Explained

Date:
April 6, 2006
Source:
University of Oregon
Summary:
Using new techniques for resurrecting ancient genes, scientists have for the first time reconstructed the Darwinian evolution of an apparently "irreducibly complex" molecular system.

Using new techniques for resurrecting ancient genes, scientists have for the first time reconstructed the Darwinian evolution of an apparently "irreducibly complex" molecular system.

The research was led by Joe Thornton, assistant professor of biology at the University of Oregon's Center for Ecology and Evolutionary Biology, and will be published in the April 7 issue of SCIENCE.

How natural selection can drive the evolution of complex molecular systems -- those in which the function of each part depends on its interactions with the other parts--has been an unsolved issue in evolutionary biology. Advocates of Intelligent Design argue that such systems are "irreducibly complex" and thus incompatible with gradual evolution by natural selection.

"Our work demonstrates a fundamental error in the current challenges to Darwinism," said Thornton. "New techniques allowed us to see how ancient genes and their functions evolved hundreds of millions of years ago. We found that complexity evolved piecemeal through a process of Molecular Exploitation -- old genes, constrained by selection for entirely different functions, have been recruited by evolution to participate in new interactions and new functions."

The scientists used state-of-the-art statistical and molecular methods to unravel the evolution of an elegant example of molecular complexity -- the specific partnership of the hormone aldosterone, which regulates behavior and kidney function, along with the receptor protein that allows the body's cells to respond to the hormone. They resurrected the ancestral receptor gene -- which existed more than 450 million years ago, before the first animals with bones appeared on Earth -- and characterized its molecular functions. The experiments showed that the receptor had the capacity to be activated by aldosterone long before the hormone actually evolved.

Thornton's group then showed that the ancestral receptor also responded to a far more ancient hormone with a similar structure; this made it "preadapated" to be recruited into a new functional partnership when aldosterone later evolved. By recapitulating the evolution of the receptor's DNA sequence, the scientists showed that only two mutations were required to evolve the receptor's present-day functions in humans.

"The stepwise process we were able to reconstruct is entirely consistent with Darwinian evolution," Thornton said. "So-called irreducible complexity was just a reflection of a limited ability to see how evolution works. By reaching back to the ancestral forms of genes, we were able to show just how this crucial hormone-receptor pair evolved."

The study's other researchers include Jamie T. Bridgham, postdoctorate research associate in evolutionary biology and Sean M. Carroll, graduate research fellow in biology. The work was funded by National Science Foundation and National Institutes of Health grants and an Alfred P. Sloan Research Fellowship recently awarded to Thornton.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Evolution Of 'Irreducible Complexity' Explained." ScienceDaily. ScienceDaily, 6 April 2006. <www.sciencedaily.com/releases/2006/04/060406231032.htm>.
University of Oregon. (2006, April 6). Evolution Of 'Irreducible Complexity' Explained. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2006/04/060406231032.htm
University of Oregon. "Evolution Of 'Irreducible Complexity' Explained." ScienceDaily. www.sciencedaily.com/releases/2006/04/060406231032.htm (accessed September 16, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) — Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins