Featured Research

from universities, journals, and other organizations

Researchers Working To Create Better Control Of Legged Robots And Human Prostheses Using Biological Inspiration

Date:
May 16, 2006
Source:
Georgia Institute Of Technology
Summary:
Steve DeWeerth and Lena Ting, faculty members in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, are working to create better control of legged robots and human prostheses using biological inspiration. Their research centers on better understanding how the nervous system communicates with joints and muscles for movement and balance and then designing systems that closely replicate the naturally fluid movement of animals and humans.

Hang Lu, an assistant professor in the School of Chemical and Biomolecular Engineering, holds a micro-sized chip designed to carefully control the types of stimuli the microscopic worms receive.
Credit: Image courtesy of Georgia Institute Of Technology

Steve DeWeerth and Lena Ting, faculty members in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, are working to create better control of legged robots and human prostheses using biological inspiration. Their research centers on better understanding how the nervous system communicates with joints and muscles for movement and balance and then designing systems that closely replicate the naturally fluid movement of animals and humans. The research group’s goal is to help build robots with better mobility and prosthetics with natural movement more similar to a real limb.

One experiment involves a small robot that closely replicates the balance and movement of a cat to help the team determine how the body communicates to joints and muscles to help withstand sudden jolts or changes in footing. The little robot takes bumps and ground shakes while researchers gather data on how it avoids falling and what kind of pressures trigger a loss of balance.

Another project combines a real frog’s muscle with a virtual robotic leg. Force impulses simulating an outside stimulus (such as a sudden bump) are sent to the frog muscle by a computer and motor. The muscle then sends a signal back to the computer, and the virtual
model translates the reaction. The biological/computer fusion creates an electrical and mechanical information loop that provides researchers with a better idea of how the muscle reacts to certain mechanical stimuli.

And in research that could lead to novel strategies for tissue engineering, repair and replacement, Georgia Tech biologist J. Todd Streelman is looking at the jaws of different species of cichlid fish to better understand the mechanical properties of jaws and teeth under stress.

Some species of cichlids crush hard prey, like snails, while others do not. Streelman’s team is generating three-dimensional X-rays of the jaws to allow them to compare species and see the microscopic architecture that reinforces the jaws while the fish crush their prey. Using a technique commonly used by engineers to model mechanical properties, Finite Element Analysis, the team is able to determine which parts of the jaws are the most important in withstanding these extreme compressive forces.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "Researchers Working To Create Better Control Of Legged Robots And Human Prostheses Using Biological Inspiration." ScienceDaily. ScienceDaily, 16 May 2006. <www.sciencedaily.com/releases/2006/05/060515232435.htm>.
Georgia Institute Of Technology. (2006, May 16). Researchers Working To Create Better Control Of Legged Robots And Human Prostheses Using Biological Inspiration. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2006/05/060515232435.htm
Georgia Institute Of Technology. "Researchers Working To Create Better Control Of Legged Robots And Human Prostheses Using Biological Inspiration." ScienceDaily. www.sciencedaily.com/releases/2006/05/060515232435.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins