Featured Research

from universities, journals, and other organizations

Ready, Set, Mutate ... And May The Best Microbe Win: Natural Selection In A Flask

Date:
May 18, 2006
Source:
Rice University
Summary:
An ingenious experiment that forced bacteria to compete in a head-to-head contest for evolutionary dominance offers a glimpse of the molecular workings of Darwinian selection. In this week's Molecular Cell, Rice University biologists describe how they stripped heat-loving bacteria of a key metabolic gene and then forced them to adapt by slowly raising the temperature of their habitat. The identical genetic adaptation won out in repeated experiments, suggesting a repeatable pattern of molecular adaptation.

Even with modern genomic tools, it's a daunting task to find a smoking gun for Darwinian evolution. The problem lies in being able to say not just when and how a specific gene mutated but also how that one genetic change translated into real-world dominance of one population over another.

Related Articles


Rice University biologists, using an ingenious experiment that forced bacteria to compete in a head-to-head contest for evolutionary dominance, today offer the first glimpse of how individual genetic-level adaptations play out as Darwinian natural selection in large populations. The results appear in the May 19 issue of Molecular Cell.

"One of our most surprising findings is that an estimated 20 million point mutations gave rise to just six populations that were capable of vying for dominance," said lead researcher Yousif Shamoo, associate professor of biochemistry and cell biology. "This suggests that very few molecular pathways are available for a specific molecular response, and it points to the intriguing possibility of developing a system to predict the specific mutations that pathogens will use in order to become resistant to antibiotics."

Rice's study involved the heat-loving bacteria G. stearothermophilus, which thrives at up to 73 degrees Celsius (163 F). Shamoo and graduate students Rafael Couñago and undergraduate Stephen Chen used a mutant strain of the microbe that was unable to make a key protein that the bacteria needed to regulate its metabolism at high temperatures. They grew the bacteria for one month in fermentor, raising the temperature a half degree Celsius each day.

Over a span of 1,500 generations, the percentage of mutant strains inside the fermentor ebbed and flowed as the single-celled microbes competed for dominance. Eventually, one strain squeezed out almost all the competition by virtue of its ability to most efficiently metabolize food at high temperature.

The metabolic protein required to thrive at high-temperature could only be made in one genetic region of the bacteria's DNA, meaning the researchers had only to characterize that small region of the genome for each new strain in order to measure evolutionary progress.

The researchers sampled the fermentor for new strains every other day. Though millions of mutations in the target gene are believed to have occurred, only about 700 of those were capable of creating a new variant of the target gene. In all, the researchers identified 343 unique strains, each of which contained one of just six variants of the critical gene.

The first of the six, dubbed Q199R, arose almost immediately, and was the dominant strain through the 500th generation. Around 62 degrees Celsius, the Q199R was unable to further cope with the rising temperature, and a new round of mutations occurred. Five new varieties -- themselves mutant forms of Q199R -- vied for final domination of the fermentor. Three of the five were driven to extinction within a couple of days, and the final two fought it out over the remaining three weeks of the test.

The research included a raft of additional experiments as well. The team characterized each of the mutant proteins to document precisely how it aided in metabolic regulation. The fermentor experiment was repeated and the same mutations -- and no others -- were observed to develop again. Three of the six genes -- the "winner," it's closest competitor and Q199R -- were spliced back into the original form of the bacteria and studied, to rule out the possibility that mutations in other genes were responsible for the competitive advantage.

Shamoo said it's significant that the mutations didn't arise where expected within the gene. Four of the six occurred in regions of the gene that are identical in both heat-resistant and non-heat-resistant forms of G. stearothermophilus. Shamoo said this strongly shows the dynamic nature of evolution at the molecular and atomic level.

Shamoo said the most promising finding is the fact that the follow-up test produced precisely the same mutant genes.

"The duplicate study suggests that the pathways of molecular adaptation are reproducible and not highly variable under identical conditions," Shamoo said.

The research was funded by the National Science Foundation, the Welch Foundation and the Keck Center for Computational and Structural Biology.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Ready, Set, Mutate ... And May The Best Microbe Win: Natural Selection In A Flask." ScienceDaily. ScienceDaily, 18 May 2006. <www.sciencedaily.com/releases/2006/05/060518180601.htm>.
Rice University. (2006, May 18). Ready, Set, Mutate ... And May The Best Microbe Win: Natural Selection In A Flask. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2006/05/060518180601.htm
Rice University. "Ready, Set, Mutate ... And May The Best Microbe Win: Natural Selection In A Flask." ScienceDaily. www.sciencedaily.com/releases/2006/05/060518180601.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) — Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) — A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) — A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) — Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins