Featured Research

from universities, journals, and other organizations

Delft University Of Technology Discovers How To Control Nanowires

Date:
June 15, 2006
Source:
Delft University of Technology
Summary:
Jorden van Dam, researcher at the Kavli Institute of Nanoscience Delft, has succeeded in largely controlling the transportation of electrons in semiconductor nanowires. Van Dam moreover discovered how to observe a divergent type of supercurrent in these wires. Nanowires have superior electronic properties which in time could improve the quality of our electronics. On Tuesday, June 13, Van Dam will receive his PhD degree at Delft University of Technology based on this research.

Jorden van Dam, researcher at the Kavli Institute of Nanoscience Delft, has succeeded in largely controlling the transportation of electrons in semiconductor nanowires. Van Dam moreover discovered how to observe a divergent type of supercurrent in these wires. Nanowires have superior electronic properties which in time could improve the quality of our electronics. On Tuesday, June 13, Van Dam will receive his PhD degree at Delft University of Technology based on this research.

During his PhD research, Jorden van Dam focused on semiconductor nanowires. These are extremely thin wires (1-100 nanometers thick) made of, for example, the material indiumarsenide, which has superior electronic properties. The integration of these high quality nanowires with the now commonly used silicium technology offers intriguing possibilities for improving our electronics in future. According to Van Dam, in recent years many possible applications for semiconductor nanowires have emerged, such as in lasers, transistors, LEDs and bio-chemical sensors. Philips is one of the companies that is conducting intensive research into the possibilities for semiconductor nanowires in specific applications.

Van Dam - who during his PhD research co-authored articles that were published in Nature and Science - was able to make a so-called quantum dot in a semiconductor nanowire (this is done at extremely low temperatures). These quantum dots can be regarded as artificial atoms and in the distant future will serve as building blocks for super-fast quantum computers. In a quantum dot, a number of electrons can be 'confined'. The magnificence of Van Dam's research is the total control he has managed to gain over the number of electrons that can be confined in a quantum dot. He can control this number by means of an externally introduced charge. A crucial factor for the extreme degree of control that Van Dam has achieved is the quality (for example the purity) of the nanowires, which were supplied by Philips. It is above all the quality of the material used (wires and electrodes) that was greatly improved during Van Dam's research.

The research also produced new physical observations. In the improved nanowires, Van Dam achieved for the first time the realisation and observation of a (theoretically already predicted) divergent type of supercurrent (a supercurrent is the current that occurs in superconductivity). In a quantum dot, the electrons normally pass through one by one. In superconductivity, the passage of electrons occurs in pairs. Van Dam, with the help of superconductor electrodes, has now achieved a supercurrent in the quantum dot, whereby the pairs of electrons pass through one by one.

Van Dam has also - under specific conditions - achieved a reversal in the direction of the supercurrent. He is able to control this reversal by varying the number of electrons confined in the quantum dot. With this, the Delft University of Technology researcher has achieved a largely controllable superconductor connection in semiconductor nanowires.


Story Source:

The above story is based on materials provided by Delft University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Delft University of Technology. "Delft University Of Technology Discovers How To Control Nanowires." ScienceDaily. ScienceDaily, 15 June 2006. <www.sciencedaily.com/releases/2006/06/060615075247.htm>.
Delft University of Technology. (2006, June 15). Delft University Of Technology Discovers How To Control Nanowires. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2006/06/060615075247.htm
Delft University of Technology. "Delft University Of Technology Discovers How To Control Nanowires." ScienceDaily. www.sciencedaily.com/releases/2006/06/060615075247.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins