Featured Research

from universities, journals, and other organizations

Scientists Discover Why Cornea Is Transparent And Free Of Blood Vessels, Allowing Vision

Date:
July 18, 2006
Source:
Schepens Eye Research Institute
Summary:
Scientists at the Harvard Department of Ophthalmology's Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary (MEEI) are the first to learn why the cornea, the clear window of the eye, is free of blood vessels -- a unique phenomenon that makes vision possible.

Diabetes can cause blood vessels to collapse, creating a hypoxic environment that generates vascular endothelial growth factor (VEGF) and triggers angiogenesis. Pericytes (diamonds) detach, destabilizing vessels. Kazlauskas and Im hypothesize that endothelial cells (rectangles) receive specific instructions during this unstable state that dictate whether the vessels should grow or regress. In the case of diabetic retinopathy, too many vessels grow, eventually obscuring vision.
Credit: Image courtesy of Schepens Eye Research Institute

Scientists at the Harvard Department of Ophthalmology's Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary (MEEI) are the first to learn why the cornea, the clear window of the eye, is free of blood vessels--a unique phenomenon that makes vision possible. The key, say the researchers, is the unexpected presence of large amounts of the protein VEGFR-3 (vascular endothelial growth factor receptor-3) on the top epithelial layer of normal healthy corneas.

Related Articles


According to their findings, VEGFR-3 halts angiogenesis (blood vessel growth) by acting as a "sink" to bind or neutralize the growth factors sent by the body to stimulate the growth of blood vessels. The cornea has long been known to have the remarkable and unusual property of not having blood vessels, but the exact reasons for this had remained unknown.

These results, published in the July 25, 2006 issue of the Proceedings of the National Academy of Sciences and in the July 17 online edition, not only solve a profound scientific mystery, but also hold great promise for preventing and curing blinding eye disease and illnesses such as cancer, in which blood vessels grow abnormally and uncontrollably, since this phenomenon, present in the cornea normally, can be used therapeutically in other tissues.

"This is a very significant discovery," says Dr. Reza Dana, Senior Scientist at the Schepens Eye Research Institute, head of the Cornea Service at the Massachusetts Eye and Ear Infirmary, and an associate professor at Harvard Medical School, and the senior author and principal investigator of the study. "A clear cornea is essential for vision. Without the ability to maintain a blood-vessel-free cornea, our vision would be significantly impaired," he says, adding that clear, vessel-free corneas are vital to any animal that needs a high level of visual acuity to survive.

The cornea, one of only a few tissues in the body that actively keep themselves vessel-free (the other is cartilage), is the thin transparent tissue that covers the front of the eye. It is the clarity of the cornea that allows light to pass onto the retina and from there to the brain for interpretation. When the cornea is clouded by injury, infection or abnormal blood vessel growth, vision is severely impaired, if not destroyed.

Scientists have been wrestling with the "clarity" puzzle for many decades. And, while some previous studies have revealed small clues, none have pointed to one major mechanism, until this study.

In most other tissues of the body, blood vessel growth or angiogenesis occurs in response to a need for increased blood flow to heal an injured or infected area. The immune system sends in growth factors such as vascular endothelial growth factor (VEGF) to bind with a protein receptor called VEGFR-2 on blood vessels to trigger vessel growth. Three forms of VEGF--A, C, and D--bind with this receptor. Two of them, C and D also bind with VEGFR-3, which is usually found on cells lining lymphatic vessels, to stimulate the growth of lymphatic vessels.

Dana's team began to suspect the involvement of VEGFR-3 in stopping blood growth in corneas when they noticed unexpectedly that large amounts of the protein seemed to exist naturally on healthy corneal epithelium, a previously unknown location for the receptor. Dana and his team were already aware from clinical experience that the epithelium most likely played a role in suppressing blood vessel growth on the cornea, having witnessed blood vessels develop on corneas stripped of their epithelial layers.

They began to theorize that the large amounts of VEGFR-3, in this new, non-vascular location, might be attracting and sucking up all the C and D VEGF growth factors, thereby blocking them from binding with VEGFR-2. And, because this binding took place in a non-vascular setting, the growth factors were neutralized.

To test their theory, the team conducted a series of experiments.

Using corneal tissue from mice, the team did the following.

They conducted chemical analyses that demonstrated that VEFGR-3 and the gene that expressed it were indeed present on the corneal epithelium. Next, in two separate experiments, they compared corneas with and without epithelial layers that were injured. They found that only the corneas without epithelial layers developed blood vessels, implicating the role of the epithelium in suppressing blood vessel growth To further prove their theory, they added a VEGFR-3 substitute to corneas stripped of their epithelial layers and found that vessel growth continued to be suppressed, replacing the normal anti-angiogenic role of the epithelium. Finally they exposed intact corneas to an agent that blocked VEGFR-3 and found that blood vessels began to grow, formally demonstrating that the corneal epithelium is key to suppression of blood vessels and that the key mechanism is expression of VEGFR-3.

"The results from this series of tests, confirmed our belief that the presence of VEGFR-3 is the major factor in preventing blood vessel formation in the cornea," says Dana, who says that the discovery will have a far reaching impact on the development of new therapies for eye and other diseases.

"Drugs designed to manipulate the levels of this protein could heal corneas that have undergone severe trauma or help shrink tumors fed by rapidly growing abnormal blood vessels," he says. "In fact, the next step in our work is exactly this."

Other authors of the study include: Claus Cursiefen* +, Lu Chen*, Magali Saint-Geniez*, Pedram Hamrah*, Yiping Jin*, Saadia Rashid*, Bronislaw Pytowski**, Kris Persaud**, Yan Wu**, J. Wayne Streilein*†, Reza Dana* ++ ,

*The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Dept. of Ophthalmology, Harvard Medical School, Boston, MA; +Dept. of Ophthalmology, Friedrich-Alexander University Erlangen-Nόrnberg, Erlangen, Germany; **ImClone Systems, Inc., New York; †Dr. J. Wayne Streilein deceased March 15 th 2004.


Story Source:

The above story is based on materials provided by Schepens Eye Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Schepens Eye Research Institute. "Scientists Discover Why Cornea Is Transparent And Free Of Blood Vessels, Allowing Vision." ScienceDaily. ScienceDaily, 18 July 2006. <www.sciencedaily.com/releases/2006/07/060718073307.htm>.
Schepens Eye Research Institute. (2006, July 18). Scientists Discover Why Cornea Is Transparent And Free Of Blood Vessels, Allowing Vision. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/07/060718073307.htm
Schepens Eye Research Institute. "Scientists Discover Why Cornea Is Transparent And Free Of Blood Vessels, Allowing Vision." ScienceDaily. www.sciencedaily.com/releases/2006/07/060718073307.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins