Featured Research

from universities, journals, and other organizations

Ultrasound Affects Embryonic Mouse Brain Development

Date:
August 9, 2006
Source:
Yale University
Summary:
The prolonged and frequent use of ultrasound on pregnant mice causes brain abnormalities in the developing mouse fetus, Yale School of Medicine researchers report August 7 in the Proceedings of the National Academy of Sciences.

The prolonged and frequent use of ultrasound on pregnant mice causes brain abnormalities in the developing mouse fetus, Yale School of Medicine researchers report August 7 in the Proceedings of the National Academy of Sciences.

Related Articles


“Proper migration of neurons during development is essential for normal development of the cerebral cortex and its function,” said Pasko Rakic, M.D., chair of the Department of Neurobiology and senior author of the study. “We have observed that a small but significant number of neurons in the mouse embryonic brain do not migrate to their proper positions in the cerebral cortex following prolonged and frequent exposure to ultrasound.”

Neurons in mammals multiply early in fetal development and then migrate to their final destinations following an inside-to-outside sequence. The destination defines the neurons’ connectivity and function. It has been reported earlier by others that abnormal cortical function may result when this process is grossly altered by genetic or environmental factors such as alcohol and drugs.

The study reported on August 7 is believed to be the first to look at the possible effect of ultrasound waves (USW) on neuronal migration in mice at a late stage of embryonic brain development, when the migratory pathways are the longest and may be most vulnerable. The Yale team injected more than 335 fetal mice at embryonic day 16 with special markers to track neuronal development. Exposure to USW for 30 minutes or longer caused a small but statistically significant number of neurons to remain scattered within inappropriate cortical layers and/or in the adjacent white matter.

“The magnitude of dispersion of labeled neurons was highly variable but increased with duration of exposure to ultrasound waves,” Rakic said. “These findings suggested the desirability of further work in this area. We do not have any evidence ourselves that USW cause behavioral effects in mice or have any effect on the developing human brain.”

“Therefore,” he continued, “I want to emphasize that our study in mice does not mean that use of ultrasound on human fetuses for appropriate diagnostic and medical purposes should be abandoned. On the contrary: ultrasound has been shown to be very beneficial in the medical context. Instead, our study warns against its non-medical use. We intend to conduct further research, which will focus on non-human primates, to see if a similar effect is occurring in the developing larger brains, which are more similar to humans. Those upcoming studies should give us information that will be more directly applicable to uses of USW in humans.”

The National Institute of Neurological Disorders and Stroke of the National Institutes of Health supported the study.

C-authors include Eugenius Ang Jr., Vicko Gluncic, Alvaro Duque and Mark Schafer of Yale.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Ultrasound Affects Embryonic Mouse Brain Development." ScienceDaily. ScienceDaily, 9 August 2006. <www.sciencedaily.com/releases/2006/08/060808231817.htm>.
Yale University. (2006, August 9). Ultrasound Affects Embryonic Mouse Brain Development. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2006/08/060808231817.htm
Yale University. "Ultrasound Affects Embryonic Mouse Brain Development." ScienceDaily. www.sciencedaily.com/releases/2006/08/060808231817.htm (accessed November 1, 2014).

Share This



More Plants & Animals News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins