Featured Research

from universities, journals, and other organizations

Discovery Of Metabolic Pathway For Parasite Could Lead To New Controls For Diseases

Date:
August 16, 2006
Source:
University of Georgia
Summary:
Cellular biologists at the University of Georgia and the University of Pennsylvania have shown that fatty acid synthesis in T. gondii is essential for the parasite's survival. The discovery could lead to the development of new drugs to make the parasite's effects much less troublesome in both humans and animals.

Toxoplasma gondii cyst in brain tissue.
Credit: Image courtesy of U.S. Centers for Disease Control and Prevention

Toxoplasma gondii is one nasty bug. A microscopic parasite, it lives in the intestinal tract of cats but can be carried by most warm-blooded animals. In humans, it can harm or even kill a developing fetus, and it can as well sicken those with compromised immune systems, such as AIDS patients.

Now, for the first time, cellular biologists at the University of Georgia and the University of Pennsylvania have shown that fatty acid synthesis in T. gondii is essential for the parasite's survival. The discovery could lead to the development of new drugs to make the parasite's effects much less troublesome in both humans and animals.

"New drugs with novel mechanisms of action are urgently needed," said Boris Striepen, a cellular biologist in the Franklin College of Arts and Sciences and the Center for Tropical and Emerging Global Diseases at the University of Georgia. "This new study presents us with a viable target for such new drugs."

The research was published this week in the Proceedings of the National Academy of Sciences. Other authors on the paper are Jolly Mazumdar, formerly a doctoral student at UGA and now a postdoctoral fellow at the University of Pennsylvania, and Emma Wilson, Kate Masek and Christopher Hunter of the School of Veterinary Medicine at the University of Pennsylvania.

Toxoplasma belongs to a group of parasites that harbor a chloroplast-like organelle, the apicoplast. Chloroplasts are the home of photosynthesis in plants and algae and are responsible for the green color of leaves. Apicoplasts have long puzzled scientists. What does a parasite living in the brain or blood of humans have to do with a structure associated with harvesting sunlight? It turns out that the chloroplasts have additional functions, and it is these functions that the parasites require.

Striepen and his team discovered that a special chloroplast fatty acid synthesis (FAS) pathway in T. gondii is essential for the parasite's ability to cause disease and to survive. Finding a way to turn off the functions of this pathway could make T. gondii a toothless tiger.

"This is the first robust genetic evidence that a specific chloroplast pathway is essential to the organism," said Striepen. Humans also have a fatty acid synthesis pathway, but because it is entirely different from the one uncovered in T. gondii, drug developers could turn off the pathway in the parasite without harming the one in humans. This makes the parasite's vital FAS pathway a perfect target.

This isn't the first time that the apicoplast has been seen as a target for drug intervention. The closely related malaria parasite also harbors an apicoplast. As early as 1998, researchers at the University of Melbourne in Australia published a paper suggesting the apicoplast as a target for new antimalarial drugs. The new paper, however, is the first to explain that the fatty acid synthesis pathway in T. gondii is necessary for the parasite's survival and why.

Toxoplasmosis often remains undiagnosed, and in healthy people, T. gondii causes few noticeable health problems. Its relatively benign status as a disease-carrying parasite, in fact, makes it ideal to study in the laboratory. It is also very amenable to genetic experiments and can serve as a model for such Apicomplexans as Plasmodium, the cause of malaria, one of the deadliest diseases on Earth. According to the World Health Organization there are 300 to 500 million clinical cases of malaria each year resulting in 1.5 to 2.7 million deaths.

For pregnant women and those with compromised immune systems, the problems are much more dangerous. For instance, Toxoplasma encephalitis is one of the leading causes of death among AIDS patients. Fetuses that contract the disease from infected mothers may be born with learning disabilities, vision problems or mental retardation.

Infections in those who are symptomatic are treatable; however, this treatment is not always effective and is often associated with toxicity, which is especially problematic in treating pregnant women.

The research reported in PNAS was supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Discovery Of Metabolic Pathway For Parasite Could Lead To New Controls For Diseases." ScienceDaily. ScienceDaily, 16 August 2006. <www.sciencedaily.com/releases/2006/08/060816020833.htm>.
University of Georgia. (2006, August 16). Discovery Of Metabolic Pathway For Parasite Could Lead To New Controls For Diseases. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2006/08/060816020833.htm
University of Georgia. "Discovery Of Metabolic Pathway For Parasite Could Lead To New Controls For Diseases." ScienceDaily. www.sciencedaily.com/releases/2006/08/060816020833.htm (accessed August 31, 2014).

Share This




More Plants & Animals News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Experimental Ebola Drug ZMapp Cures Lab Monkeys Of Disease

Newsy (Aug. 29, 2014) In a new study, a promising experimental treatment for Ebola managed to cure a group of infected macaque monkeys. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins