Featured Research

from universities, journals, and other organizations

On The Track Of Tiny Larvae, A New Model Elucidates Connections In Marine Ecology

Date:
August 27, 2006
Source:
Cell Press
Summary:
A computer model newly developed by researchers combines ocean current simulations and genetic forecasting to help scientists predict animal dispersion patterns and details of the ecology of coral reefs across the Caribbean Sea.

A computer model newly developed by researchers combines ocean current simulations and genetic forecasting to help scientists predict animal dispersion patterns and details of the ecology of coral reefs across the Caribbean Sea. The work is reported by Heather M. Galindo and Stephen R. Palumbi of Stanford University, and Donald B. Olson of the University of Miami, and appears in the August 22nd issue of Current Biology, published by Cell Press.

Effective marine management and conservation planning require a better understanding of the movement of young marine animals, including small larvae, in part because such movements facilitate normal biological connections among geographically separate populations. Although tiny larvae are impossible to follow directly, advances in modeling ocean currents have made it possible to predict larval movements. However, until now it has remained difficult to test these movement predictions in the field by comparing the model to data from population genetic studies.

The new work enables scientists to field-test such predictions and thereby hone our understanding of how marine larvae disperse in the environment and influence the structure of adult populations. In their study, the researchers coupled two types of models: One model predicts the movements of "virtual" coral larvae in the Caribbean Sea based on ocean currents, while the second model gives the virtual larvae a genetic tag. The researchers then tested this new approach by comparing the new model's predictions to empirical genetic data for threatened staghorn corals.

This test showed that combining the oceanographic and genetic models allowed the researchers to successfully predict genetic patterns on a regional scale. This breakthrough approach to integrating genetic and oceanographic models helps predict genetic links among several locations and is an important new tool for the management and ecological study of marine protected areas.

The researchers include Heather M. Galindo and Stephen R. Palumbi of Stanford University in Pacific Grove, California; Donald B. Olson of University of Miami in Miami, Florida.

The authors were supported through the Bahamian Biocomplexity Project sponsored by the National Science Foundation (NSF OCE-0119976), NOAA-FL Sea Grant NA16RG-2195, and grants from the David and Lucille Packard and Gordon and Betty Moore Foundations to PISCO. In addition, this material is based upon work supported under a National Science Foundation Graduate Research Fellowship awarded to H.M.G.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "On The Track Of Tiny Larvae, A New Model Elucidates Connections In Marine Ecology." ScienceDaily. ScienceDaily, 27 August 2006. <www.sciencedaily.com/releases/2006/08/060826171608.htm>.
Cell Press. (2006, August 27). On The Track Of Tiny Larvae, A New Model Elucidates Connections In Marine Ecology. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2006/08/060826171608.htm
Cell Press. "On The Track Of Tiny Larvae, A New Model Elucidates Connections In Marine Ecology." ScienceDaily. www.sciencedaily.com/releases/2006/08/060826171608.htm (accessed August 28, 2014).

Share This




More Computers & Math News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hackerspace Provides Hackers Creative Haven

Hackerspace Provides Hackers Creative Haven

AP (Aug. 27, 2014) HeatSync Labs, a so-called hackerspace in Mesa, Arizona provides members and the public alike a space to allow their creative juices to flow and make their tech dreams into a reality. (Aug 27) Video provided by AP
Powered by NewsLook.com
Why A 12.9-Inch iPad Would Make Sense For Apple

Why A 12.9-Inch iPad Would Make Sense For Apple

Newsy (Aug. 27, 2014) There are two big knocks against the iPad — productivity limits and slumping sales. Here's how a bigger iPad could fix both of Apple's problems. Video provided by Newsy
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Nationwide Time Warner Internet Crash Results In More Bad PR

Nationwide Time Warner Internet Crash Results In More Bad PR

Newsy (Aug. 27, 2014) The nationwide Internet crash resulted in millions of customers' internet connection to go out for hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins