Featured Research

from universities, journals, and other organizations

Novel Mechanism Of Manganese-induced Neurological Dysfunction Discovered

Date:
September 5, 2006
Source:
Johns Hopkins University Bloomberg School of Public Health
Summary:
Chronic exposure to high concentrations of the metal manganese can cause movement abnormalities resembling symptoms of Parkinson's disease, but without the same neuron damage characteristic of Parkinson's patients. Researchers from the Johns Hopkins Bloomberg School of Public Health and Thomas Jefferson University have discovered a potential explanation to why these neurological symptoms may occur with manganese exposure.

For decades, scientists have known that chronic exposure to high concentrations of the metal manganese can cause movement abnormalities resembling symptoms of Parkinson’s disease, but apparently without the same neuron damage characteristic of Parkinson’s patients. Now, researchers from the Johns Hopkins Bloomberg School of Public Health and Thomas Jefferson University have discovered a potential explanation to why these neurological symptoms may occur with manganese exposure.

Related Articles


The study found that dopamine neurons in the brain of animals exposed to manganese do not release dopamine when stimulated, suggestive of a dysfunctional dopamine system even though the neurons do not show the damage present with Parkinson’s disease. Dopamine is a key neurotransmitter necessary for normal motor function. In addition, the researchers found that effects of manganese exposure occurred at blood concentrations in the upper range of levels documented in children and adults with environmental or occupational exposure. The study is published in the online version of the journal Experimental Neurology.

Manganese is a metal used in welding, battery making and in other industrial settings. In Canada, it replaced lead as a gasoline additive. Manganese, in the form of MMT, is approved in the United States as a gasoline additive but is not in use. The symptoms of “manganism” include behavioral and memory disturbances as well as Parkinson’s-like symptoms. Tremors occur with movement as opposed to the resting tremors typical of Parkinson’s disease.

“These findings may provide an explanation for some of the differences between manganism and idiopathic Parkinson’s disease, as well as why patients with manganese-induced neurological symptoms do not seem to respond to traditional Parkinson’s therapies,” said the study’s lead author, Tomαs R. Guilarte, PhD, a professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health.

For the study, researchers observed a group of animals that were given incremental levels of manganese. The animals were monitored for behavioral changes and Positron Emission Tomography (PET) was used to assess various markers of dopamine neurons in the brain. According to the study, in addition to decreased in vivo dopamine release, manganese exposure produced subtle deficits in behavior and fine motor function.

“More work is needed to understand the relationship between the changes in behavior and the alterations in the dopamine system,” explained Jay S. Schneider, professor of pathology, anatomy and cell biology at Thomas Jefferson University and co-author of the study.

“There are other aspects of manganese neurotoxicity that this on-going study is examining that are likely to change the way that we view the risk of manganese exposure today,” said Guilarte.

“Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates” was written by Tomαs R. Guilarte, Ming-Kai Chen, Jennifer L. McGlothan, Tatyana Verina, Dean F. Wong, Yun Zhou, Mohab Alexander, Charles A. Rohde, Tore Syversen, Emmanuel Decamp, Amy Jo Koser, Stephanie Fritz, Heather Gonczi, David W. Anderson and Jay S. Schneider.
Funding was provided by a grant from the National Institute of Environmental Health Sciences.


Story Source:

The above story is based on materials provided by Johns Hopkins University Bloomberg School of Public Health. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University Bloomberg School of Public Health. "Novel Mechanism Of Manganese-induced Neurological Dysfunction Discovered." ScienceDaily. ScienceDaily, 5 September 2006. <www.sciencedaily.com/releases/2006/08/060828211611.htm>.
Johns Hopkins University Bloomberg School of Public Health. (2006, September 5). Novel Mechanism Of Manganese-induced Neurological Dysfunction Discovered. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2006/08/060828211611.htm
Johns Hopkins University Bloomberg School of Public Health. "Novel Mechanism Of Manganese-induced Neurological Dysfunction Discovered." ScienceDaily. www.sciencedaily.com/releases/2006/08/060828211611.htm (accessed October 31, 2014).

Share This



More Mind & Brain News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) — The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Techy Tots Are Forefront of London's Baby Show

Techy Tots Are Forefront of London's Baby Show

AP (Oct. 28, 2014) — Moms and Dads get a more hands-on approach to parenting with tech-centric products for raising their little ones. (Oct. 28) Video provided by AP
Powered by NewsLook.com
Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Cocoa Could Be As Good For Memory As It Is For A Sweet Tooth

Newsy (Oct. 27, 2014) — Researchers have come up with another reason why dark chocolate is good for your health. A substance in the treat can reportedly help with memory. Video provided by Newsy
Powered by NewsLook.com
Five-Year-Olds Learn Coding as Britain Eyes Digital Future

Five-Year-Olds Learn Coding as Britain Eyes Digital Future

AFP (Oct. 27, 2014) — Coding has become compulsory for children as young as five in schools across the UK. Making it the first major world economy to overhaul its IT teaching and put programming at its core. Duration: 02:19 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins