Featured Research

from universities, journals, and other organizations

How Did Our Ancestors' Minds Really Work?

Date:
September 8, 2006
Source:
Max Planck Society
Summary:
How did our evolutionary ancestors make sense of their world? What strategies did they use, for example, to find food? Fossils do not preserve thoughts, so we have so far been unable to glean any insights into the cognitive structure of our ancestors.

Padana, a young female orangutan at the Leipzig Zoo, who was one of the research subjects.
Credit: Image : Knut Finstermeier, MPI for Evolutionary Anthropology

How did our evolutionary ancestors make sense of their world? What strategies did they use, for example, to find food? Fossils do not preserve thoughts, so we have so far been unable to glean any insights into the cognitive structure of our ancestors.

Related Articles


However, in a study recently published in Current Biology (September 5, 2006), researchers at the Max Planck Institute for Psycholinguistics and their colleagues at the Max Planck Institute for Evolutionary Anthropology were able to find answers to these questions using an alternative research method: comparative psychological research. In this way, they discovered that some of the strategies shaped by evolution are evidently masked very early on by the cognitive development process unique to humans.

Being able to remember and relocate particular places where there is food is an asset to any species. There are two basic strategies for remembering the location of something: either remembering the features of the item (it was a tree, a stone, etc.), or knowing the spatial placement (left, right, middle, etc.). All animal species tested so far - from goldfish, pigeons and rats though to humans - seem to employ both strategies. However, if the type of recall task is designed so that the two strategies are in opposition, then some species (e.g. fish, rats and dogs) have a preference for locational strategies, while others (e.g. toads, chickens and children) favor those which use distinctive features.

Until now, no studies had systematically investigated these preferences along the phylogenetic tree. Recently, however, Daniel Haun and his colleagues have carried out the first research of its kind into the cognitive preferences of a whole biological family, the hominids. They compared the five species of great apes - orangutans, gorillas, bonobos, chimpanzees and humans - to establish which cognitive strategies they prefer in order to uncover hidden characteristics.

The researchers worked on the assumption that if all five species share particular preferences, these are very probably a part of the evolutionary legacy of our most recent common ancestors, who died out some 15 million years ago.At the Wolfgang Koehler Primate Research Center at the Leipzig Zoo, the researchers hid coveted items using two different strategies (see Fig.2): In the place condition, the item remained in the same place it was hidden in previously, but under a different object (e.g. a stone); in the feature condition the object remained the same, but the place changed.

It was established that all four great ape species and one-year-old children actually use the location as a way of finding something hidden, even if it is hidden under a completely different object. This outcome suggests that this preference has been part of our cognitive structure for 15 million years.

The researchers then investigated three-year-old children and discovered a difference: Unlike younger children, they considered the object under which the item was hidden to be the most reliable indication of its whereabouts, even if the location had changed completely. The scientists have sufficient evidence to conclude that 1-year-old children and great apes do not lack the capability to develop a feature-based strategy, but simply prefer to use a place-based strategy. Evidently, humans reassess these preferences as their cognitive development continues.

"The unique human cognitive development seems to mask some of our evolved strategies even before we reach the age of three," says Daniel Haun. "In future experiments, we therefore want to find out which areas of cognitive development in humans, for example language acquisition, are responsible for this restructuring of cognitive preferences." The new methodical approach and the results it yields pave the way for the systematic study of the cognitive structures of our evolutionary ancestors and thus ultimately to an improved understanding of the origins of human thinking.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "How Did Our Ancestors' Minds Really Work?." ScienceDaily. ScienceDaily, 8 September 2006. <www.sciencedaily.com/releases/2006/09/060908000933.htm>.
Max Planck Society. (2006, September 8). How Did Our Ancestors' Minds Really Work?. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/09/060908000933.htm
Max Planck Society. "How Did Our Ancestors' Minds Really Work?." ScienceDaily. www.sciencedaily.com/releases/2006/09/060908000933.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins