Featured Research

from universities, journals, and other organizations

Experimental Cancer Drugs Counter Muscle Deterioration Seen In Muscular Dystrophy

Date:
September 18, 2006
Source:
Burnham Institute
Summary:
Muscle weakness and fiber deterioration seen in muscular dystrophy can be countered by a class of drugs currently under study for their effects against cancer, a Burnham Institute study has found.

Muscle weakness and fiber deterioration seen in muscular dystrophy can be countered by a class of drugs currently under study for their effects against cancer, a Burnham Institute study has found.

The report shed light on the potential use of these drugs, called histone deacetylase inhibitors, in promoting regeneration and repair of dystrophic muscles, thereby countering the progression of the disease, in two different mouse models of muscular dystrophy. Led by Burnham Institute assistant professor Lorenzo Puri, M.D., Ph.D., in collaboration with the Dulbecco Telethon Institute (DTI) of Rome and other colleagues in Italy and at the National Institutes of Health, the study was made available to researchers worldwide by expedited publication at Nature Medicine's website on September 17, 2006.

Puri's team discovered that ongoing treatment with the deacetylase inhibitor Trichostatin A, currently under clinical study for breast cancer, restored skeletal muscle mass and prevented the impaired function characteristic of muscular dystrophies. Importantly, these restored muscles showed an increased resistance to contraction-coupled degeneration--the primary mechanism by which muscle function declines in Duchenne muscular dystrophy and related dystrophies.

Indeed, muscles examined from dystrophic mice treated with Trichostatin A for three months displayed normal tissue architecture, as compared to the muscles examined from untreated, dystrophic mice. Furthermore, dystrophic mice receiving treatment were able to perform physical exercise (e.g. running on a treadmill) similar to normal, non-dystrophic mice.

Muscular dystrophy is a group of more than 30 genetic diseases, characterized by progressive weakness and deterioration of skeletal muscles. All are inherited, caused by a mutation in one of a group of genes responsible for maintaining muscle integrity. Puri's team studied the disease's most common form, Duchenne muscular dystrophy, which affects one in 3,500 male births, according to the National Institute of Neurological Diseases and Stroke. Inheritance is linked to the X chromosome and recessive, so the disease primarily affects boys. Most children with Duchenne muscular dystrophy die in their late teens or early 20s. The disease currently has no cure.

"We have identified a new rationale for treating muscular dystrophy, aimed at correcting the devastating effects of a single flawed gene," said Puri. "This is a significant advance over the use of steroids--currently the only treatment available--which offers palliative relief, often with severe side effects."

"These exciting results, while encouraging, will require extensive investigation to determine whether the effectiveness of these drugs in dystrophic mice will translate into an effective treatment for individuals suffering this disease," cautions Puri, who has devoted over 10 years to the study of muscular dystrophy. "It is difficult to predict how long it will take before these studies will be translated into therapies for human patients."

"Our future studies will focus on understanding precisely how several existing deacetylase inhibitors effect muscle regeneration. We will use this information to identify new compounds with similar or even better efficacy in treating muscular dystrophies."

Puri's research on the effects of deacetylase inhibitors on muscle regeneration was inspired by his previous studies, which started 10 years ago, in collaboration with Dr. Vittorio Sartorelli at NIH, on the biochemical and molecular mechanism regulating the expression of genes that coordinate muscle regeneration. These studies led to the identification of different enzymes (called acetyltransferases and deacetylases) that promote or inhibit the expression of regeneration genes, and have the potential of influencing the efficiency of muscle regeneration.

Dr. Puri's colleagues contributing to this study include Giulia Minetti, Chiara Mozzetta and Silvia Fortuni of the Dulbecco Telethon Institute, Rome, Italy; Carlo Serra of the Burnham Institute for Medicine; Claudia Colussi, Stefania Straino, Carlo Gaetano and Maurizio Capogrossi of the Istituto Dermopatico dell' Immacolata, Rome, Italy; Raffaella Adami, Valeria Parente and Roberto Bottinelli of the University of Pavia, Italy; Maurizio Sampaolesi of the Stem Cell Research Institute, Milan, Italy; Monica Di Padova and Vittorio Sartorelli of the National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland; Barbara Illi of the IRCCS, Milan, Italy; and Paola Gallinari and Christian Steinkόhler of the Istituto di Ricerche di Biologia Molecolare, Rome, Italy.

This study was supported with funding from the Muscular Dystrophy Association (MDA), Telethon (Italy), and Parent Project Muscular Dystrophy.


Story Source:

The above story is based on materials provided by Burnham Institute. Note: Materials may be edited for content and length.


Cite This Page:

Burnham Institute. "Experimental Cancer Drugs Counter Muscle Deterioration Seen In Muscular Dystrophy." ScienceDaily. ScienceDaily, 18 September 2006. <www.sciencedaily.com/releases/2006/09/060917232022.htm>.
Burnham Institute. (2006, September 18). Experimental Cancer Drugs Counter Muscle Deterioration Seen In Muscular Dystrophy. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2006/09/060917232022.htm
Burnham Institute. "Experimental Cancer Drugs Counter Muscle Deterioration Seen In Muscular Dystrophy." ScienceDaily. www.sciencedaily.com/releases/2006/09/060917232022.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) — A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) — The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) — Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:  

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile iPhone Android Web
          Follow Facebook Twitter Google+
          Subscribe RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins