Featured Research

from universities, journals, and other organizations

Study Unveils How West Nile Virus Evades Immune Defenses, Points To Vaccine Development

Date:
October 5, 2006
Source:
UT Southwestern Medical Center
Summary:
West Nile virus evades the body's immune defenses by blocking immune signaling by a protein receptor, a finding that could pave the way for a vaccine to protect against North American strains of the virus, UT Southwestern Medical Center researchers report.

Researchers led by Dr. Michael Gale (right), associate professor of microbiology, compared the genetics of an illness-causing Texas strain of the West Nile virus to a harmless African strain and discovered that the virus evades the body’s immune defenses by blocking immune signaling by a protein receptor, a finding that could pave the way for a vaccine. Brian Keller, a student in the Medical Scientist Training Program, is first author of the study.
Credit: UT Southwestern Medical Center

West Nile virus evades the body's immune defenses by blocking immune signaling by a protein receptor, a finding that could pave the way for a vaccine to protect against North American strains of the virus, UT Southwestern Medical Center researchers report.

Researchers discovered the receptor's key role in controlling West Nile infection by conducting a study, described in October's Journal of Virology, that compares the genetics of an illness-causing Texas strain of the virus to a harmless African strain.

The Texas strain can inflict illness because it blocks the signaling activity of a protein receptor called the interferon alpha/beta receptor, or IFNAR, disrupting a cell's ability to direct the immune system to fight off the virus.

The African strain does not block IFNAR activity, so the immune system renders it harmless. The strain is harmful, however, in mice with dysfunctional receptors.

"We now hope to harness the African strain as the basis for West Nile vaccine studies. The virus has spread across the country and infected more than 2,100 U.S. residents -- 180 in Texas this year alone, so we have to learn how to deal with it," said Dr. Michael Gale, associate professor of microbiology at UT Southwestern and director of the study. Brian Keller, a student in the Medical Scientist Training Program at UT Southwestern, is the first author of the study.

West Nile virus, which is transmitted by mosquito bite, arrived in the United States in 1999 and has become an epidemic that flares up in the summer and lasts into fall.

Infection causes mild flu-like symptoms in most people, but about one in every 150 develop serious illness, that can include high fever, coma, seizures and encephalitis and meningitis. Children, the elderly or people with weak immune systems are most at risk.

There is no vaccine. Doctors can only treat symptoms of the disease.

Searching for clues that might allow development of a vaccine, Dr. Gale and his research team compared one strain from each of West Nile's two basic categories: the harmful strains associated with outbreaks of encephalitis and meningitis in North America, and non-harmful strains from Madagascar and Cyprus.

They studied a harmful strain isolated from an infected grackle from Hall County, Texas, in 2002, and a harmless strain isolated from an infected parrot from Madagascar in 1978.

They mapped the genetic makeup of each strain, and then tested the viruses in mice.

West Nile infection triggers production of interferon, a group of proteins that are crucial in immune defense. Interferon, which binds to IFNAR, subsequently signals the JAK-STAT molecular pathway, a series of biochemical reactions essential for turning on immune-defense genes, allowing the body to clear out the virus. This process occurs normally in the African strain.

Infection by the Texas strain, however, blocked IFNAR signaling activity, allowing the virus to replicate and spread.

This highlights the integral role of interferon and IFNAR signaling in innate immunity.

Dr. Gale said the mechanisms at work in the African strain could be used as a basis for a vaccine, perhaps mutating North American strains so they no longer disrupt immune signaling. The remaining key is figuring out the exact mechanics of how the strains block signaling, a project Dr. Gale's team is already at work on.

Fortunately, North American strains are extremely similar -- in fact, the one that appeared in the United States in 1999 and the Texas strain used in this study are 99 percent identical. One vaccine could, in theory, prevent illness from many of the harmful strains, Dr. Gale said.

"We feel a vaccine could be highly effective in preventing infection," said Dr. Gale.

Dr. Brenda Fredericksen of UT Southwestern and researchers from the Washington University School of Medicine, Texas Veterinary Medical Diagnostic Laboratory and UT Medical Branch in Galveston also were involved in the study.

The Ellison Medical Foundation, the National Institutes of Health and the Howard Hughes Medical Institute supported the study.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Study Unveils How West Nile Virus Evades Immune Defenses, Points To Vaccine Development." ScienceDaily. ScienceDaily, 5 October 2006. <www.sciencedaily.com/releases/2006/10/061004180053.htm>.
UT Southwestern Medical Center. (2006, October 5). Study Unveils How West Nile Virus Evades Immune Defenses, Points To Vaccine Development. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2006/10/061004180053.htm
UT Southwestern Medical Center. "Study Unveils How West Nile Virus Evades Immune Defenses, Points To Vaccine Development." ScienceDaily. www.sciencedaily.com/releases/2006/10/061004180053.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins