Featured Research

from universities, journals, and other organizations

Researchers Make Interlocked Molecules -- Prelude to Building Artificial Systems Similar to Living Cell

Date:
October 22, 2006
Source:
University of California - Los Angeles
Summary:
An enormous challenge to science is the generation of two individual molecules that are not chemically bound to each other but are mechanically wedged together to form a tight link. A team of British and American researchers has now developed an entire new family of such mutually interlocked molecules and has generated a first example.

Suitanes are a new family of mutually interlocked molecules. A doll dressed in a “onesie” is an example of a suit[5]ane. The chemistry research team is headed by J. Fraser Stoddart at UCLA and David J. Williams at Imperial College, London.
Credit: chemistry journal Angewandte Chemie

An enormous challenge to science is the generation of two individual molecules that are not chemically bound to each other but are mechanically wedged together to form a tight link. A team of British and American researchers now has developed an entire new family of such mutually interlocked molecules. The team is headed by J. Fraser Stoddart -- director of the California NanoSystems Institute (CNSI), who holds UCLA's Fred Kavli Chair in Nanosystems Sciences -- and David J. Williams, emeritus professor of chemistry at Imperial College, London.

Related Articles


The researchers have named these novel compounds "suitanes," based on their resemblance to a "torso" with two or more "limbs" that is completely enveloped in a one-piece "suit." The number of limbs is indicated by a number inserted into the name of the compound --for example, a suit[2]ane has two limbs and a suit[3]ane has three.

"Discovering the way to dress a molecule with another one is a prelude to constructing artificial systems reminiscent of the living cell," Stoddart said.

A suit[5]ane -- a suitane with five limbs -- looks like a doll wearing a one-piece romper enclosing all five limbs: two legs, two arms and the head, said Stoddart, a pioneer in supermolecular chemistry who grew up in Scotland.

"The inspiration for the name came from looking at my grandson in a onesie, an American term I had never heard before," he said.

The team of chemists has successfully synthesized the simplest representative of this class of compounds: a suit[2]ane. They first used computer simulations to develop a plan of attack. The inner molecule, the "body," should be relatively stiff and oblong, Stoddart said. The suit must be a flexible molecule that can be assembled around the body from a few individual components.

"Like a well-tailored suit, all of the individual components must be perfectly coordinated with each other regarding their shape, size and functional groups," Stoddart said. The research is published this month in the German chemistry journal, Angewandte Chemie.

The chemists first produced a stiff, linear molecular framework. A slim center (a central aromatic ring) was hooked to two bulging "shoulders" (anthracene ring systems), each attached to an "arm." Next, the molecule was dressed in its suit. The suit was put on piece-by-piece and "sewed" together in a final step: in a self-organization process, two large ring-shaped molecules (crown ethers) slipped like sleeves onto the molecular "arms."

The torso, arms and sleeves were chemically outfitted to provide strong interactions to hold the sleeves tightly in place. In the next step, another smaller type of molecule (aromatic ring) was added. These molecules each contained two groups of atoms (amino groups) located across from each other, designed to each enter into attractive interactions with one spot on each sleeve. In the final step, chemical bonds were formed at these four points of contact; the aromatic rings thus linked the two sleeves into a single large molecule that completely enclosed the torso molecule without binding to it chemically.

The CNSI, a joint enterprise between UCLA and the University of California, Santa Barbara, is exploring the power and potential of organizing and manipulating matter to engineer "new devices and systems that will extend the scope of many existing technologies and foster commercial development far beyond anything we might have contemplated up until now," Stoddart said. Its mission is to encourage university collaboration with industry and to enable the rapid commercialization of discoveries in nanosystems.

For more information about Stoddart's research, please see http://stoddart.chem.ucla.edu/. For more about the CNSI, please see http://www.cnsi.ucla.edu/.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Researchers Make Interlocked Molecules -- Prelude to Building Artificial Systems Similar to Living Cell." ScienceDaily. ScienceDaily, 22 October 2006. <www.sciencedaily.com/releases/2006/10/061018094029.htm>.
University of California - Los Angeles. (2006, October 22). Researchers Make Interlocked Molecules -- Prelude to Building Artificial Systems Similar to Living Cell. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2006/10/061018094029.htm
University of California - Los Angeles. "Researchers Make Interlocked Molecules -- Prelude to Building Artificial Systems Similar to Living Cell." ScienceDaily. www.sciencedaily.com/releases/2006/10/061018094029.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins