Featured Research

from universities, journals, and other organizations

Sunflower Speciation Highlights Roles For Transposable Elements In Evolution

Date:
October 24, 2006
Source:
Cell Press
Summary:
In a finding that furthers our understanding of how hybridization may contribute to genome changes and the evolution of new species, researchers have found that the genomes of three sunflower species that arose in evolution as hybrids of the same two parental types have undergone a massive proliferation of genetic entities known as transposable elements.

In a finding that furthers our understanding of how hybridization may contribute to genome changes and the evolution of new species, researchers have found that the genomes of three sunflower species that arose in evolution as hybrids of the same two parental types have undergone a massive proliferation of genetic entities known as transposable elements. The findings are reported by Mark Ungerer and colleagues at Kansas State University and appear in the October 24th issue of the journal Current Biology, published by Cell Press.

Theory predicts that for diploid species--that is, those possessing two sets of chromosomes, like most animals and plants--the origin of new species through inter-species hybridization may be facilitated by rapid reorganization of genomes. Previous work on three independently derived hybrid sunflower species has validated this mode of speciation by documenting novel structural rearrangements in their chromosomes, as well as large-scale increases in nuclear DNA content. The nuclear-genome size differences between the hybrids and their parental taxa occur in spite of the fact that all species possess the same number of chromosomes and are diploids.

In the new work, the researchers have determined that the genome size differences between the hybrid and parental sunflower species are associated with a massive proliferation of transposable genetic elements that has occurred independently in the genome of each hybrid species. Transposable elements, made famous by Barbara McClintock in her study of their behavior in maize, are related to infectious retroviruses and are capable of multiplying and inserting themselves at different points throughout a host genome. They are found in virtually all eukaryotic genomes.

The new findings not only add an interesting twist to the origin of new sunflower species through hybridization, but also suggest that the sunflower system may emerge as an excellent model group for studying the natural forces influencing the activation and proliferation of transposable elements in plants. This is because in addition to their hybrid origins, each of the three hybrid species is adapted to, and evolved in, a so-called abiotically extreme environment--two of the species are found in desert environments, while the third is adapted to salt marshes. Both hybridization and abiotic stress have been implicated as natural agents of activation and proliferation of transposable elements.

The researchers include Mark C. Ungerer, Suzanne C. Strakosh and Ying Zhen of Kansas State University in Manhattan, Kansas. This work was funded by NSF EPSCoR and Kansas State University.

Ungerer et al.: "Correspondence: Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation." Publishing in Current Biology 16, R1-2, October 24, 2006. DOI 10.1016/j.cub.2006.09.020. http://www.current-biology.com


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Sunflower Speciation Highlights Roles For Transposable Elements In Evolution." ScienceDaily. ScienceDaily, 24 October 2006. <www.sciencedaily.com/releases/2006/10/061024010411.htm>.
Cell Press. (2006, October 24). Sunflower Speciation Highlights Roles For Transposable Elements In Evolution. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2006/10/061024010411.htm
Cell Press. "Sunflower Speciation Highlights Roles For Transposable Elements In Evolution." ScienceDaily. www.sciencedaily.com/releases/2006/10/061024010411.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins