Featured Research

from universities, journals, and other organizations

Vaccination With Embryonic Stem Cells Prevents Lung Cancer In Mice

Date:
November 8, 2006
Source:
European Organisation for Research and Treatment of Cancer
Summary:
Researchers have discovered that vaccinating mice with embryonic stem cells prevented lung cancer in those animals that had had cancer cells transplanted into them after the vaccination or that had been exposed to cancer-causing chemicals, the 18th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics heard on Wednesday.

Researchers in America have discovered that vaccinating mice with embryonic stem cells prevented lung cancer in those animals that had had cancer cells transplanted into them after the vaccination or that had been exposed to cancer-causing chemicals.

Related Articles


The findings suggest that it could be possible to develop embryonic stem cell vaccines that prevent cancers in humans, such as hereditary breast and colon cancer and lung cancer caused by smoking or other environmental factors.

Professor John Eaton told a news briefing at the EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Prague today (Wednesday 8 November): "We found that the vaccinations were between 80-100% effective in preventing tumour growth in mice that were subsequently challenged with transplanted Lewis lung carcinoma, and it was between 60-90% effective in mice subsequently exposed to carcinogens that cause lung cancer.

"Our results raise the exciting possibility of developing a prophylactic vaccine capable of preventing the appearance of various types of cancers in humans, especially those with hereditary, chronological or environmental predispositions to neoplastic disease."

However, he warned that the work was still in its early stages and that people should not think that, for instance, they could start, or carry on, smoking because a vaccine to prevent lung cancer was just around the corner.

"Cancer has been prevented and even cured in mice hundreds of times. At present, all I can say is that so far it looks good, and that, unless something unexpected happens, this strategy might some day be applied to humans at high risk for development of cancer. The likelihood of this happening is more a question for the US Food and Drug Agency than for us. Given their stringent regulations I consider it quite likely that, by the time this is tried in humans, I will be pushing up daisies."

Prof Eaton is the James Graham Brown Professor of Cancer Biology and Deputy Director of the James Graham Brown Cancer Center, University of Louisville, USA. He and his colleague, Dr Robert Mitchell, tested two different vaccines in the mice. One consisted of embryonic stem cells (ESC) only, obtained from mouse blastocysts (very early, pre-implantation embryos). The other vaccine consisted of the ESCs combined with cultured fibroblast cells producing GM-CSF, a growth factor usually made by white blood cells and blood vessel-lining endothelial cells, which "supercharges" the immune response and appears to enhance the vaccine-induced immunity to cancer.

Prof Eaton explained: "We needed a delivery vehicle for GM-CSF and chose STO fibroblasts because they are often used as a 'feeder layer' to maintain these particular mouse embryonic stem cells in their embryonic state. If we had used only ESCs expressing GM-CSF, they might have differentiated into non-embryonic cells, which, therefore, would not have worked as a vaccine."

He and his team injected mice with ESCs alone or ESCs + STO/GM-CSF. In mice that had Lewis lung carcinoma transplanted into them afterwards, ESCs were 80% effective in preventing tumour growth and ESCs + STO/GM-CSF were 100% effective. In mice subsequently exposed to a carcinogen that causes lung cancer (3-methylcholanthrene followed by repetitive dosing with butylated hydroxytoluene), ESCs resulted in 60% of mice remaining tumour free after 27 weeks and ESC + STO/GM-CSF resulted in 90% remaining tumour free. Importantly, tumours arising in vaccinated mice were, on average, about 80-90% smaller than tumours in unvaccinated mice. All the unvaccinated mice developed tumours. None of the vaccinated mice developed autoimmune disease or a showed a significant decline in adult pluripotent bone marrow stem cells -- both potential adverse responses to the vaccinations.

Prof Eaton said: "We think the results from the carcinogen-initiated cancers are probably the most important, as they are closer to the 'real-life' model of the development of cancer than just implanting cancer cells in an animal. We are studying several different types of carcinogen-induced mouse cancers (skin, colon, breast) to determine whether the preventative effect of vaccination extends beyond our models of lung cancer (although in our state of Kentucky with its high smoking rates, lung cancer alone would be a big victory). We may also vaccinate ageing rodents, the majority of which develop endocrine tumours in old age.

"In terms of human testing, if all goes well, then I think this vaccination might best be tested in women at high (genetic) risk of breast cancer, in people with high (genetic) risk of colon cancer and, perhaps, in smokers.

"Our progress over the next few years will depend, to a large extent, on whether we can attract significant funding. Our work is presently supported by a pilot grant from our cancer centre and a small grant from the Kentucky Lung Cancer Research Program. US federal funding agencies such as the NIH -- notorious for funding predictable research -- have been quite disinterested."


Story Source:

The above story is based on materials provided by European Organisation for Research and Treatment of Cancer. Note: Materials may be edited for content and length.


Cite This Page:

European Organisation for Research and Treatment of Cancer. "Vaccination With Embryonic Stem Cells Prevents Lung Cancer In Mice." ScienceDaily. ScienceDaily, 8 November 2006. <www.sciencedaily.com/releases/2006/11/061108101513.htm>.
European Organisation for Research and Treatment of Cancer. (2006, November 8). Vaccination With Embryonic Stem Cells Prevents Lung Cancer In Mice. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2006/11/061108101513.htm
European Organisation for Research and Treatment of Cancer. "Vaccination With Embryonic Stem Cells Prevents Lung Cancer In Mice." ScienceDaily. www.sciencedaily.com/releases/2006/11/061108101513.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins