Featured Research

from universities, journals, and other organizations

Magnet Lab Researchers Deciphering Flu Virus

Date:
November 10, 2006
Source:
Florida State University
Summary:
As the Northern Hemisphere braces for another flu season, researchers at Florida State University's National High Magnetic Field Laboratory in Tallahassee, Florida are making strides toward better understanding the mechanics of the virus that causes it -- a virus that kills between one-quarter and one-half million people each year.

Influenza virus.
Credit: National High Magnetic Field Laboratory, Florida State University, Tallahassee, Fla.

As the Northern Hemisphere braces for another flu season, researchers at Florida State University's National High Magnetic Field Laboratory are making strides toward better understanding the mechanics of the virus that causes it -- a virus that kills between one-quarter and one-half million people each year.

Tim Cross, director of the lab's Nuclear Magnetic Resonance (NMR) program, and collaborators from Brigham Young University are trying to understand the minute parts of the highly virulent Influenza Type A virus. To do that, they are using all of the magnet lab's NMR resources, including its 15-ton, 900-megahertz magnet, to produce a detailed picture of the virus's skin.

"Using the magnet helps us build a blueprint for a virus's mechanics of survival," said Cross, who also is a professor of chemistry and biochemistry at FSU. "The more detailed the blueprint, the better our chances of developing drugs capable of destroying it."

The only magnet of its kind in the world, the "900" is critical to the project's process. Otherwise, an image this complicated would be impossible to obtain.

Cross and David Busath, a biophysicist at Brigham Young University, recently discovered key components of the protein holes, or "channels," in the influenza viral skin. These components lead to unique chemical reactions that are thought to be important clues for understanding how the channels regulate whether the virus can distribute its genes into host cells and reproduce or not. The researchers' findings were published recently in the Proceedings of the National Academy of Sciences.

"This is a viral structure we haven't seen before," Busath said. "And yet, through these tiny little doors, acids must come in and DNA must go out if the virus is to survive. The idea is to block the door to prevent the normal function required for the virus to replicate."

Once researchers understand how these channels are selective for acid, they can use that knowledge to fashion novel drugs capable of more effectively killing the virus.

The work is funded by a five-year, multimillion-dollar grant from the National Institutes of Health. Other authors on the Proceedings of the National Academy of Sciences paper are Jun Hu, Riqiang Fu, Katsuyuki Nishimura, Li Zhang and Huan-Xiang Zhou, all of FSU, and Viksita Vijayvergiya, a former postdoctoral fellow at BYU.


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Cite This Page:

Florida State University. "Magnet Lab Researchers Deciphering Flu Virus." ScienceDaily. ScienceDaily, 10 November 2006. <www.sciencedaily.com/releases/2006/11/061109153952.htm>.
Florida State University. (2006, November 10). Magnet Lab Researchers Deciphering Flu Virus. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/11/061109153952.htm
Florida State University. "Magnet Lab Researchers Deciphering Flu Virus." ScienceDaily. www.sciencedaily.com/releases/2006/11/061109153952.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins