Featured Research

from universities, journals, and other organizations

Synthetic Peptide Targets Latent Papilloma Virus Infections

Date:
January 5, 2007
Source:
University of California - Berkeley
Summary:
Infection with the human papilloma virus, the major cause of cervical cancer, is forever. The virus remains latent in skin cells, ready to flare up at any time to create warts on the skin or the genitals. A new finding by UC Berkeley's Michael Botchan and colleagues offers hope that a drug can halt spread of the virus into new cells, and perhaps even eliminate the virus from the body.

In upper photo, the chromosomes of a dividing epithelial cell (red) have more than a hundred hitchhikers -- DNA plasmids of the human papilloma virus (green). Treating a cell with a special peptide created by UC Berkeley researchers kicks the hitchhikers off (lower photo), and could lead to a drug that will prevent spread of the virus.
Credit: Photo s courtesy Botchan lab/UC Berkeley

While a newly marketed vaccine promises to drastically reduce human papilloma virus (HPV) infections, the major cause of cervical cancer, a new discovery by University of California, Berkeley, researchers could some day help the millions of people already infected and at constant risk of genital warts and cancer.

One study found that 75 percent of sexually active men and women under 50 have, or have had, an HPV infection, while 10,000 women annually develop cervical cancer, more than 90 percent of which is caused by HPV. Four thousand women die of cervical cancer each year.

Once infected, it's difficult to rid oneself of the virus because it hides as a latent DNA in cells of the epithelial tissue, such as skin and the lining of the vagina and cervix, and spreads as these cells divide.

The UC Berkeley team created a protein fragment, or peptide, that successfully prevents the virus from hitching a ride on a cell's chromosomes as the cell divides. If such a peptide - or more likely, a drug that mimics the action of the peptide - works in the body, it would effectively stop the virus from spreading or generating warts, which can progress to cancer.

"We're optimistic that this will work generally for many different genetic variants of human papilloma virus, though it's too early to say how many of the genotypes of this virus will respond," said Michael Botchan, professor of molecular and cell biology and a faculty affiliate of the UC Berkeley branch of the California Institute for Quantitative Biology (QB3). "The hope is to have one drug that works for all different human virus types."

"The second most preventable cancer in the world, after lung cancer, is cervical cancer, the result of high HPV infection rates in the developing world, in Asia and South America and Africa," he added. "If we can get something to stop HPV replication, it would have a big health impact."

Botchan, post-doctoral fellow Eric A. Abbate and researcher Christian Voitenleitner reported their results in the Dec. 28 issue of the journal Molecular Cell.

Many of the 90-plus known genetic variants or strains of HPV cause warts in surface tissues, including the penis, vagina and cervix, but three variants - HPV-16, 18 and 31 - are notorious as the primary causes of cervical cancer in the world. The virus hides out in epithelial stem cells, which are naοve cells at the base of the skin that can turn into many of the various types of cells that make up the skin. As these cells divide and differentiate into skin cells, the viruses hitch a ride on the cells' chromosomes but do not become part of the chromosomes, as do other known pathogens, such as HIV in blood cells.

The virus can transform infected cells and make them proliferate into nipple-like warts. Unlike unsightly warts on the skin, tongue or penis, warts in the cervix are often flat and easily overlooked unless laboratory staining is used to find signs of pathology, as in Pap screening. If untreated or left to flare up repeatedly, the warts can progress to cancer.

Earlier work by Botchan and numerous other researchers on the human and cow (bovine) papilloma virus has shown how the virus moves into new cells. It carries its genes in the form of a circular DNA plasmid that nestles in the nucleus of the cell and makes use of the cellular machinery to generate more copies of itself. Each cell can house hundreds of plasmids.

When the cell divides into two daughter cells, the plasmids glom onto the chromosomes so as not be left behind, and are copied and delivered along with the duplicate chromosomes into the daughter cells, where they again take up residence in the nucleus as latent viral DNA. The viral plasmids turn into infectious viruses only in the top, differentiated layers of tissue.

Previous work showed that the bovine papilloma virus hitchhikes by throwing out a thumb - in actuality, a protein called E2 - that latches onto a cellular protein that, in turn, attaches to histone proteins that envelop the chromosome, tethering the plasmid to the chromosomes.

The new research by Botchan and his colleagues shows that HPV works the same way. The UC Berkeley team created a short peptide that binds to E2 in hopes that this synthetic peptide would prevent E2, and thus the viral plasmid, from successfully tethering to the chromosomes.

By tracking the plasmid DNA in dividing cultured cells, the researchers showed that the synthetic peptide did indeed prevent HPV from following the chromosomes into daughter cells. The plasmids were left behind.

Because they built the peptide to enter cells easily, the peptide has potential as a topical treatment for the viral infection.

"We didn't start out looking for a way to develop a drug, but we stumbled across a way to get the peptide taken up by the cell, and it works," said Voitenleitner. "So far, though, we've only shown that it has a short term effect of releasing the DNA from chromosomes, and this is a long way from curing cells in people."

The researchers hope to partner with a biotechnology company to improve the peptide or develop better drug candidates, and ideally to find a formulation that can be taken orally rather than applied topically.

Botchan, Voitenleitner and Abbate obtained the crystal structure of the site where E2 binds to the chromosomal proteins, which are called Brd4. This not only allowed for the development of the peptide, but should make it easier for drug developers to design a molecule that can nudge Brd4 aside so as to bind and block the action of E2.

Botchan, who has studied DNA replication in viruses for 30 years to understand similar processes in higher organisms, says that such a drug might work against all strains of HPV because the E2 tethering protein is similar in all the viruses. And because the E2 protein is found only in papilloma viruses, a drug that blocks it shouldn't have side effects in humans.

The strategy the researchers used to block HPV spread might also prove useful against other infectious viruses, such as the related Epstein-Barr virus, the cause of mononucleosis and an aggressive form of lymphocytic leukemia called Burkitt's leukemia, and the Kaposi's sarcoma virus, which can develop to cancer in those with AIDS.

The work was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "Synthetic Peptide Targets Latent Papilloma Virus Infections." ScienceDaily. ScienceDaily, 5 January 2007. <www.sciencedaily.com/releases/2007/01/070103110250.htm>.
University of California - Berkeley. (2007, January 5). Synthetic Peptide Targets Latent Papilloma Virus Infections. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2007/01/070103110250.htm
University of California - Berkeley. "Synthetic Peptide Targets Latent Papilloma Virus Infections." ScienceDaily. www.sciencedaily.com/releases/2007/01/070103110250.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) — Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins