Featured Research

from universities, journals, and other organizations

Researchers Find Substantial Wind Resource Off Mid-Atlantic Coast

Date:
February 6, 2007
Source:
University of Delaware
Summary:
The wind resource off the Mid-Atlantic coast could supply the energy needs of nine states from Massachusetts to North Carolina, plus the District of Columbia -- with enough left over to support a 50 percent increase in future energy demand -- according to a study by researchers at the University of Delaware and Stanford University.

Nysted wind farm in the Baltic Sea off Denmark.
Credit: Photo by Jeremy Firestone

The wind resource off the Mid-Atlantic coast could supply the energy needs of nine states from Massachusetts to North Carolina, plus the District of Columbia--with enough left over to support a 50 percent increase in future energy demand--according to a study by researchers at the University of Delaware and Stanford University.

Related Articles


Willett Kempton, Richard Garvine and Amardeep Dhanju at the University of Delaware and Mark Jacobson and Cristina Archer at Stanford, found that the wind over the Middle Atlantic Bight, the aquatic region from Cape Cod, Mass., to Cape Hatteras, N.C., could produce 330 gigawatts (GW) of average electrical power if thousands of wind turbines were installed off the coast.

The estimated power supply from offshore wind substantially exceeds the region's current energy use, which the scientists estimate at 185 gigawatts, from electricity, gasoline, fuel oil and natural gas sources.

Supplying the region's energy needs with offshore wind power would reduce carbon dioxide emissions by 68 percent and reduce greenhouse gases by 57 percent, according to the study.

The study marks the first empirical analysis in the United States of a large-scale region's potential offshore wind-energy supply using a model that links geophysics with wind-electric technology--and that defines where wind turbines at sea may be located in relation to water depth, geology and “exclusion zones” for bird flyways, shipping lanes and other uses.

The results are published in the Jan. 24 issue of Geophysical Research Letters, a peer-reviewed scientific journal produced by the American Geophysical Union, a nonprofit organization of geophysicists with more than 49,000 members in 140 countries.

Kempton, the UD professor of marine policy who led the study, has worked on several public opinion surveys about offshore wind power over the past three years, including a survey of Cape Cod residents, who largely have opposed a major wind farm proposed for their coastal area, and a more recent survey in Delaware that revealed strong support for offshore wind power as the next electricity source for the state.

“In doing our surveys and watching the public debate, we saw that no one had solid empirical data on the actual size of the offshore wind resource, and we felt this was important for policy decisions,” Kempton said.

Kempton collaborated with an interdisciplinary team of scientists, including Garvine, who is a physical oceanographer and Maxwell P. and Mildred H. Harrington Professor of Marine Studies at UD, and Jacobson, a professor of civil and environmental engineering at Stanford. Archer, who recently completed her doctorate, and Dhanju, who is working on his doctorate, also carried out parts of the research.

The Delaware Green Energy Fund, UD's College of Marine and Earth Studies, the Delaware Sea Grant College Program and the Global Climate and Energy Project at Stanford supported the study.

Estimating the wind power resource

The scientists began by developing a model of the lowest atmospheric layer over the ocean. Known as the “planetary boundary layer,” it extends vertically from the ocean surface to 3,000 meters (up to 9,842 feet) and is where strong, gusty winds occur due to friction between the atmosphere and the sea surface, solar heating and other factors. It provides the “fuel” for offshore wind turbines, which may stand up to 80 meters (262 feet) tall, with blades as long as 55 meters (180 feet).

The scientists examined current wind-turbine technologies to determine the depth of the water and the distance from shore the wind turbines could be located. They also defined “exclusion zones” where wind turbines could not be installed, such as major bird flyways, shipping lanes, chemical disposal sites, military restricted areas, borrow sites where sediments are removed for beach renourishment projects, and “visual space” from major tourist beaches.

To estimate the size of the wind power resource, the researchers needed to figure out the maximum number of wind turbines that could be erected and the region's average wind power. The spacing used between the hypothetical wind turbines was about one-half mile apart. At a closer spacing, Kempton said, upwind turbines will “steal” wind energy from downstream ones.

Anemometer readings from the nine NOAA weather buoys in the Middle Atlantic Bight were analyzed. To determine the average wind over the region, the scientists reviewed all the wind-speed data from the past 21 years from one of the buoys. The findings were then extrapolated to the height of the offshore wind turbines currently being manufactured in order to determine the average power output per unit. At the current 80-meter (262-foot) wind turbine height, the extrapolated wind speed of the mid-range buoy is 8.2 meters per second (18.3 miles per hour or 16 knots).

The scientists' estimate of the full-resource, average wind power output of 330 gigawatts over the Middle Atlantic Bight is based on the installation of 166,720 wind turbines, each generating up to 5 megawatts of power. The wind turbines would be located at varying distances from shore, out to 100 meters of water depth, over an ocean area spanning more than 50,000 square miles, from Cape Cod to Cape Hatteras.

In comparison to the oil and natural gas resources of the Atlantic Outer Continental Shelf--the submerged land that lies seaward from 3 miles offshore and is under federal jurisdiction--the researchers found that the shelf's reported energy sources would amount to only one-tenth of the wind resource and would be exhausted in 20 years.

Addressing wind power fluctuations and energy priorities

While 330 gigawatts is the average output of the entire offshore wind resource over the Mid-Atlantic Bight, the researchers note that offshore wind is not uniform and offer suggestions for addressing power fluctuations.

“Over a large area like this, the wind blows stronger at some times and places, weaker at others,” Kempton said.

To make wind power more uniform, the study shows that multiple sites could be connected through power lines to reduce the number of times of both maximum and minimum power. Changes in new and replacement energy-using devices, including automobiles, also could provide for greater power storage.

“Battery and plug-in hybrid automobiles, for example, have large storage that is unused when the car is parked,” Kempton said.

With a scientifically reliable estimate of the region's offshore wind power potential now in hand, how likely are we to actually install more than 100,000 wind turbines off the Mid-Atlantic coast?

Kempton said it's a matter of priority. “Today, market forces and incremental technology developments will gradually make offshore wind the least-cost power in more and more East Coast locations,” Kempton said. “On the other hand, if climate change becomes a much greater priority for the United States, our study shows how we could displace more than half the carbon dioxide emissions of the Mid-Atlantic area quickly, using existing technology.”

On the practicality of producing 166,720 wind turbines, co-author Richard Garvine noted, “the United States began producing 2,000 warplanes per year in 1939 for World War II, increased production each year, and, by 1946, had sent 257,000 aircraft into service.

“We did that in seven years, using 1940s technology,” he said.

More information on wind power is available from UD's Offshore Wind Power Group at http://www.ocean.udel.edu/windpower/.


Story Source:

The above story is based on materials provided by University of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University of Delaware. "Researchers Find Substantial Wind Resource Off Mid-Atlantic Coast." ScienceDaily. ScienceDaily, 6 February 2007. <www.sciencedaily.com/releases/2007/02/070204111710.htm>.
University of Delaware. (2007, February 6). Researchers Find Substantial Wind Resource Off Mid-Atlantic Coast. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/02/070204111710.htm
University of Delaware. "Researchers Find Substantial Wind Resource Off Mid-Atlantic Coast." ScienceDaily. www.sciencedaily.com/releases/2007/02/070204111710.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins