Featured Research

from universities, journals, and other organizations

Human Stem Cell Transplants Repair Rat Spinal Cords

Date:
February 13, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
Human nerve stem cells transplanted into rats' damaged spinal cords have survived, grown and in some cases connected with the rats' own spinal cord cells in a Johns Hopkins laboratory, overturning the long-held notion that spinal cords won't allow nerve repair.

Human nerve stem cells transplanted into rats' damaged spinal cords have survived, grown and in some cases connected with the rats' own spinal cord cells in a Johns Hopkins laboratory, overturning the long-held notion that spinal cords won't allow nerve repair.

Related Articles


A report on the experiments will be published online this week at PLoS Medicine and "establishes a new doctrine for regenerative neuroscience," says Vassilis Koliatsos, M.D., associate professor of neuropathology at Johns Hopkins. "The spinal cord, a part of the nervous system that is thought of as incapable of repairing itself, can support the development of transplanted cells," he added.

"We don't yet know whether the connections we've seen can transmit nerve signals to the degree that a rat could be made to walk again," says Koliatsos, "We're still in the proof of concept stage, but we're making progress and we're encouraged."

In their experiments, the scientists gave anesthetized rats a range of spinal cord injuries to lesion or kill motor neurons or performed sham surgeries. They varied experimental conditions to see if the presence or absence of spinal cord lesions had an effect on the survival and maturation of human stem cell grafts. Two weeks after lesion or sham surgery, they injected human neural stem cells into the left side of each rat's spinal cord.

After six months, the team found more than three times the number of human cells than they injected in the damaged cords, meaning the transplanted cells not only survived but divided at least twice to form more cells. Moreover, says Koliatsos, the cells not only grew in the area around the original injection, but also migrated over a much larger spinal cord territory.

Three months after injection, the researchers found evidence that some of the transplanted cells developed into support cells rather than nerve cells, while the majority became mature nerve cells. High-powered microscopic examination showed that these nerve cells appear to have made contacts with the rat's own spinal cord cells.

The research was funded by the National Institute of Neurological Disorders and Stroke, the Muscular Dystrophy Association and the Robert Packard Center for ALS Research at Johns Hopkins.

Authors on the paper are Jun Yan, Leyan Xu, Annie M. Welsh, Glen Hatfield and Koliatsos, all of Hopkins, and Thomas Hazel and Karl Johe of Neuralstem of Rockville, Md.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Human Stem Cell Transplants Repair Rat Spinal Cords." ScienceDaily. ScienceDaily, 13 February 2007. <www.sciencedaily.com/releases/2007/02/070213142747.htm>.
Johns Hopkins Medical Institutions. (2007, February 13). Human Stem Cell Transplants Repair Rat Spinal Cords. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2007/02/070213142747.htm
Johns Hopkins Medical Institutions. "Human Stem Cell Transplants Repair Rat Spinal Cords." ScienceDaily. www.sciencedaily.com/releases/2007/02/070213142747.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Museum Shares Terrifying Goblin Shark With the World

Australian Museum Shares Terrifying Goblin Shark With the World

Buzz60 (Mar. 4, 2015) The Australian Museum has taken in its fourth-ever goblin shark, a rare fish with an electricity-sensing snout and &apos;alien-like&apos; jaw. Mike Janela (@mikejanela) takes a look. Video provided by Buzz60
Powered by NewsLook.com
Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Prince William Calls for Unified Effort Against Illegal Wildlife Trade

Reuters - Entertainment Video Online (Mar. 4, 2015) Britain&apos;s Prince William pledges to unite against illegal wildlife trade on the final day of his visit to China. Rough cut - no reporter narration Video provided by Reuters
Powered by NewsLook.com
Rare Goblin Shark Found in Australia

Rare Goblin Shark Found in Australia

AFP (Mar. 3, 2015) A goblin shark, a rare sea creature described as an &apos;alien of the deep&apos; is found off Australia and delivered to the Australian Museum in Sydney. Duration: 01:25 Video provided by AFP
Powered by NewsLook.com
Kenya President Sets Fire to 15 Tonnes of Elephant Ivory

Kenya President Sets Fire to 15 Tonnes of Elephant Ivory

AFP (Mar. 3, 2015) Kenyan President Uhuru Kenyatta set fire to a giant pile of 15 tonnes of elephant ivory Tuesday, vowing to destroy the country&apos;s entire stockpile of illegal tusks by the year&apos;s end. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins