Featured Research

from universities, journals, and other organizations

Fetal Heart-cell Enzyme Important In Onset Of Heart Failure

Date:
February 20, 2007
Source:
University of Pennsylvania School of Medicine
Summary:
In almost all forms of heart failure, the heart begins to express genes that are normally only expressed in the fetal heart. Researchers have known for years that this fetal-gene reactivation happens, yet not what regulates it. Now, investigators at the Penn have discovered that an enzyme important in fetal heart-cell development regulates the enlargement of heart cells, known as cardiac hypertrophy, which is a precursor to many forms of congestive heart failure.

Cross-section of expression of HDAC2 (red) in mouse fetal heart. (Credit: Jonathan A. Epstein, MD, University of Pennsylvania School of Medicine, Nature Medicine)
Credit: Jonathan A. Epstein, MD, University of Pennsylvania School of Medicine, Nature Medicine

In almost all forms of heart failure, the heart begins to express genes that are normally only expressed in the fetal heart. Researchers have known for years that this fetal-gene reactivation happens, yet not what regulates it. Now, investigators at the University of Pennsylvania School of Medicine have discovered that an enzyme important in fetal heart-cell development regulates the enlargement of heart cells, known as cardiac hypertrophy, which is a precursor to many forms of congestive heart failure (CHF).

Related Articles


The study, which paves the way for new targets for treating cardiac hypertrophy and heart failure, appears in an advanced online publication of Nature Medicine.

"It's as if old programs are being reactivated in a sick heart," explains senior author Jonathan A. Epstein, MD, the W.W. Smith Endowed Chair for Cardiovascular Research at Penn. "In an adult heart, stresses such as high blood pressure induce the reexpression of a fetal gene program."

The investigators found that by inhibiting the enzyme HDAC in adult mice the fetal-gene program can be prevented from restarting. "We found that in various mouse models of cardiac hypertrophy and heart failure, treatment with chemical HDAC inhibitors or genetic deletion of HDAC2 prevented the beginning of the downward slide to progressive heart failure," says Epstein.

HDAC is an enzyme switch that regulates how DNA is packaged inside the cell, and therefore how large groups of related genes are turned on and off. During development HDAC normally regulates proliferation of heart cells in the embryo. "This makes sense if a molecular pathway in which HDAC has a major role is re-expressed--the adult heart instead makes the cells it already has bigger since it is unable to make more cells very easily."

The researchers also found that HDAC works in the heart in part by regulating expression of another enzyme called Inpp5f, which is involved in a pathway that controls the growth and multiplication of cells. Inpp5f is also related to tumor-suppressor genes involved in cancer.

"HDAC and Inpp5f give us new targets for regulating cardiac hypertrophy," says Epstein. "Inhibitors of HDAC may warrant testing for cardiac disease to stop the hypertrophy that accompanies the re-expression of the fetal-gene program."

HDAC inhibitors are already in trials for cancer and one, valproic acid, has been used for years to treat seizures. Most CHF medications are aimed at regulating blood pressure, but very few are targeted at the heart-muscle cells themselves. About 5 million Americans are living with CHF today, according to the American Heart Association.

"To understand how to better treat heart disease at the cellular level is an important next step," says Epstein.

This study was funded by the National Institutes of Health.

Co-authors in addition to Epstein are Chinmay M. Trivedi, Yang Luo, Zhan Yin, Maozhen Zhang, Wenting Zhu, Tao Wang, Thomas Floss, Martin Goettlicher, Patricia Ruiz Noppinger, Wolfgang Wurst, Victor A. Ferrari, Charles S. Abrams, and Peter J. Gruber.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Fetal Heart-cell Enzyme Important In Onset Of Heart Failure." ScienceDaily. ScienceDaily, 20 February 2007. <www.sciencedaily.com/releases/2007/02/070220035254.htm>.
University of Pennsylvania School of Medicine. (2007, February 20). Fetal Heart-cell Enzyme Important In Onset Of Heart Failure. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2007/02/070220035254.htm
University of Pennsylvania School of Medicine. "Fetal Heart-cell Enzyme Important In Onset Of Heart Failure." ScienceDaily. www.sciencedaily.com/releases/2007/02/070220035254.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Suicide Rates Up For Young Women In U.S.

Suicide Rates Up For Young Women In U.S.

Newsy (Mar. 6, 2015) According to a report from the CDC, suicide rates among young women increased from 1994 to 2012 while rates among young men have decreased. Video provided by Newsy
Powered by NewsLook.com
Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Liberia Releases Last Ebola Patient, But Threat Remains

Liberia Releases Last Ebola Patient, But Threat Remains

Newsy (Mar. 5, 2015) Liberia&apos;s last Ebola patient has been released, and the country hasn&apos;t recorded a new case in a week. However, fears of another outbreak still exist. Video provided by Newsy
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins