Featured Research

from universities, journals, and other organizations

'Bridge' Protein Spurs Deadliest Stages Of Breast Cancer

Date:
February 27, 2007
Source:
Burnham Institute
Summary:
A protein known for its ability to "bridge" interactions between other cellular proteins may spur metastasis in breast cancer, the disease's deadliest stage, a study from Burnham Institute for Medical Research has found.

A protein known for its ability to "bridge" interactions between other cellular proteins may spur metastasis in breast cancer, the disease's deadliest stage, a study from Burnham Institute for Medical Research has found.

Related Articles


Led by professor Gen-Sheng Feng, Ph.D., and colleagues at Burnham and Royal Victoria Hospital in Montreal, Quebec, the study ranks among the first to more precisely define the cancer role for the protein known as Gab-2. These results, to be published in the journal Oncogene, have been made available to the worldwide medical research community by priority posting online at the journal's website.

The protein has been of keen research interest for its role in breast cancer, but whether it controlled metastasis or initial tumor growth was unknown. Gab-2 is one of a group of proteins known as "scaffold" or "bridge" proteins, which provide a molecular intermediary to help cell signal proteins interact.

"Although Gab-2 is highly expressed in breast cancer, it is not essential for the development of cancer," said Feng. "We found that Gab-2 is, however, essential for metastasis, or the spread of cancer. Breast cancer victims can survive before metastasis, but their chances decrease significantly when the cancer cells have spread. If we can understand precisely how Gab-2 functions in metastasis, then we might be able use this knowledge to design treatments that would block the deadly metastasis."

Feng, who studies molecular signaling in embryonic stem cells and examines signaling pathways that are involved in obesity and diabetes, has studied the roles played by Gab-2 and its chemical cousin Gab-1, in various disorders. His fundamental analyses of cell signaling for Gab-2 led him to study the protein in cancer cells.

Feng and his colleagues began by examining Gab-2's role in a pathway influenced by the cancer-causing oncogene Neu, which is implicated in nearly 30 percent of human breast cancers and associated with poor survival rates. While scientists have known that the Neu pathway drives cancer development and metastasis (and can be treated with the drug Herceptin with a certain degree of success), the molecular mechanisms that lead to breast cancer development and metastasis are not fully understood.

Feng worked with mice a special strain of mice which lacks the gene for Gab-2. The Gab-2 mutant mice were bred with two types of mice; one with an active gene that induced metastatic breast cancer tumors and another that grew breast cancer cells with low potential for metastasis.

The mutant mice showed minor effects from the initial growth of breast cancer cells, Feng and his team found, indicating that Gab-2 has little effect on inducing cancer cell growth. However, in the mice pre-disposed to metastatic breast caner, the lack of Gab-2 potently reduced metastasis rates, indicating that Gab-2 was necessary for metastasis, if not for initial tumor growth.

Since Gab-2 is a scaffold molecule and is possibly part of many signaling pathways, Feng's group wanted to determine how it influences cancer cell growth. They studied pathways known as Akt and Erk, well-known parts of the Neu oncogene pathway, in the mice lacking Gab-2 and found that while levels of Akt signals were unaffected by Gab-2's absence, Erk signals were significantly reduced.

"It appears that Akt and Erk pathways have distinctive roles in mammary tumors; initiation and growth for Akt and metastasis for Erk," said Feng. "We suspect that Gab-2 might promote mammary cell metastasis through Erk activation. This is a novel mechanism for breast cancer metastasis which makes Gab-2 a possible new target for the design of therapies for metastatic breast cancer."

Feng and his team are now looking at the other molecules that assist the scaffold protein Gab-2's effects on breast cancer metastasis.

Feng's colleagues in the study include Yuehai Ke, Dongmei Wu, Frederic Princen, Thanh Nguyen, Yuhong Pang, Jacqueline Lesperance and Robert Oshima of Burnham, and William Muller of Royal Victoria Hospital, Montreal, Quebec, Canada.

This research was supported by grants from the National Cancer Institute and from the National Heart, Lung, and Blood Institute of the National Institutes of Health, and a postdoctoral fellowship from the California Breast Cancer Research Program.


Story Source:

The above story is based on materials provided by Burnham Institute. Note: Materials may be edited for content and length.


Cite This Page:

Burnham Institute. "'Bridge' Protein Spurs Deadliest Stages Of Breast Cancer." ScienceDaily. ScienceDaily, 27 February 2007. <www.sciencedaily.com/releases/2007/02/070222102701.htm>.
Burnham Institute. (2007, February 27). 'Bridge' Protein Spurs Deadliest Stages Of Breast Cancer. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2007/02/070222102701.htm
Burnham Institute. "'Bridge' Protein Spurs Deadliest Stages Of Breast Cancer." ScienceDaily. www.sciencedaily.com/releases/2007/02/070222102701.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins