Featured Research

from universities, journals, and other organizations

Biologically Inspired Sensors Can Augment Sonar, Vision System In Submarines

Date:
February 26, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
To find prey and avoid being preyed upon, fish rely on a row of specialized sensory organs along the sides of their bodies, called the lateral line. Now, a research team led by Chang Liu at the University of Illinois at Urbana-Champaign has built an artificial lateral line that can provide the same functions in underwater vehicles.

One of the models that Chang Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois, and his postdoctoral research assoociate, Yingchen Yang, are using to test their artificial lateral line. Their research could assist autonomous underwater robots. (Credit: Photo by L. Brian Stauffer)
Credit: Photo by L. Brian Stauffer

To find prey and avoid being preyed upon, fish rely on a row of specialized sensory organs along the sides of their bodies, called the lateral line. Now, a research team led by Chang Liu at the University of Illinois at Urbana-Champaign has built an artificial lateral line that can provide the same functions in underwater vehicles.

"Our development of an artificial lateral line is aimed at enhancing human ability to detect, navigate and survive in the underwater environment," said Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois. "Our goal is to develop an artificial device that mimics the functions and capabilities of the biological system."

In fish, the lateral line provides guidance for synchronized swimming, predator and obstacle avoidance, and prey detection and tracking. Equipped with an artificial lateral line, a submarine or underwater robot could similarly detect and track moving underwater targets, and avoid collisions with moving or stationary objects.

The artificial lateral line consists of an integrated linear array of micro fabricated flow sensors, with the sizes of individual sensors and spacings between them matching those of their biological counterpart.

"By detecting changes in water pressure and movement, the device can supplement sonar and vision systems in submarines and underwater robots," said Liu, who also is affiliated with the university's Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.

Liu and colleagues at Illinois and at Bowling Green State University described their work in the Dec. 12, 2006, issue of the Proceedings of the National Academy of Sciences.

To fabricate the tiny, three-dimensional structures, individual components are first cast in place on sacrificial layers using photolithography and planar deposition. A small amount of magnetic material is electroplated onto each of the parts, which are then freed from the substrate by an etchant. When a magnetic field is applied, the induced torque causes the pieces to rotate out of the plane on tiny hinges and lock into place.

Each sensor is integrated with metal-oxide-superconductor circuitry for on-chip signal processing, noise reduction and data acquisition. The largest array the researchers have built consists of 16 flow sensors with 1 millimeter spacing. Each sensor is 400 microns wide and 600 microns tall.

In tests, the researchers' artificial lateral line was able to localize a nearby underwater vibrating source, and could detect the hydrodynamic wake (such as the wake formed behind a propeller-driven submarine) for long-distance tracking. With further advances in engineering, man-made underwater vehicles should be able to autonomously image hydrodynamic events from their surroundings, Liu said.

"Although biology remains far superior to human engineering, having a man-made parallel of the biological system allows us to learn much about both basic science and engineering," Liu said. "To actively learn from biology at the molecular, cellular, tissue and organism level is still the bigger picture."

The work was funded by the U.S. Air Force Office of Scientific Research and by the Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Biologically Inspired Sensors Can Augment Sonar, Vision System In Submarines." ScienceDaily. ScienceDaily, 26 February 2007. <www.sciencedaily.com/releases/2007/02/070222160016.htm>.
University of Illinois at Urbana-Champaign. (2007, February 26). Biologically Inspired Sensors Can Augment Sonar, Vision System In Submarines. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2007/02/070222160016.htm
University of Illinois at Urbana-Champaign. "Biologically Inspired Sensors Can Augment Sonar, Vision System In Submarines." ScienceDaily. www.sciencedaily.com/releases/2007/02/070222160016.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins