Featured Research

from universities, journals, and other organizations

How T Lymphocytes Attack Tumors

Date:
March 8, 2007
Source:
CNRS
Summary:
French CNRS researchers with a group of scientists from Institut Curie and INSERM have used two-photon microscopy to demonstrate, for the first time in vivo and real-time, how T lymphocytes infiltrate a solid tumor in order to fight it. How is a tumor destroyed by T lymphocytes? This scenario has recently been visualised and published in the journal of Experimental Medicine.

The scientists injected mice with tumour cells expressing a green fluorescent molecule: some cells were endowed with an antigen, ovalbumin, while the others (which served as controls) were devoid of this antigen. When the tumours reached 500 to 1000 mm3, eight to ten days later, the scientists injected the mice with a large number of antigen-specific T lymphocytes. On these two-photon microscopy photographs we can see, left, that the tumour expresses the antigen and the tumour cells (in green) are few in number as they have been destroyed by T lymphocytes. On the right, the tumour is devoid of the antigen and the tumour cells have not been destroyed. The blue labelling corresponds to collagen fibres and the red labelling to blood vessels.
Credit: Copyright A. Boissonnas, L. Fetler/Institut Curie

Our immune system finds it difficult to eliminate tumours effectively. Deciphering the strategies it implements may increase the immune system's effect on tumour cells and thus improve the clinical perspectives for anticancer immune therapy. At the Institut Curie, INSERM and CNRS researchers have used two-photon microscopy to demonstrate, for the first time in vivo and real-time, how T lymphocytes infiltrate a solid tumour in order to fight it.

These "defenders" methodically encircle the enemy positions and "patrol" until they meet a tumour cell, which they have previously learnt to recognise. They then halt to eliminate it, before resuming their rounds. The rapidity of the advance achieved by T lymphocytes is indicative of either the absence of an adversary, or defeat of the immune system in the battlefield.

This scenario was published in The Journal of Experimental Medicine.

How is a tumour destroyed by T lymphocytes? This scenario has recently been visualised by researchers at the Institut Curie. The original images obtained and assembled in twelve video sequences are the result of close collaboration between a specialist in two-photon microscopy, Luc Fetler, an INSERM scientist in the CNRS/Institut Curie "Physical Chemistry Curie" Unit1, and immunologists, notably Alexandre Boissonnas, in the INSERM "Immunity and Cancer" Unit at Institut Curie.

Our body's defences against an infection or tumour are based on a string of actors, some of them generalists, the others highly specialised. Cytotoxic T lymphocytes belong to the second category. To achieve their task, their cell surface carries a membrane receptor which is complementary to the antigen in the pathological cells to be eliminated. Alerted by the presence of this antigen, the T lymphocytes are activated. Having identified an infectious or tumour cell, they bind to it and target it with a fatal load of enzymes.

When T lymphocytes infiltrate a tumour...

Before this work by Alexandre Boissonnas and Luc Fetler, no-one had ever observed at the cellular scale what happens when activated T cells arrive in a solid tumour. The novel experimental model developed by these Institut Curie scientists reveals the strategy adopted by these cells to destroy the tumour.

Recognition of the tumour antigen determines T lymphocyte behaviour. To arrive at their conclusion, the researchers used an animal model to observe the route followed by T lymphocytes in tumours endowed with a particular antigen, ovalbumin (OVA) and in tumours which served as controls and were devoid of this antigen. When the tumours reached 500 to 1000 mm3, eight to ten days after the injection of tumour cells with or without the antigen, the researchers then injected the mice with a large number of OVA antigen-specific T cells.

What happened after the day of transfer? As expected, only the tumour with the OVA antigen disappeared, after about a week. In the interval, the two-photon microscope (see box) made it possible to examine the scene in situ over the first 150 micrometres of the tumour. Each image provided a photograph of the different cell populations, blood vessels and collagen fibres present. And using a series of successive images, it was possible to reconstitute the trajectory of a T lymphocyte.

Using this method, the researchers thus examined the different protagonists -- T lymphocytes and tumour cells -- during two distinct periods of tumour development. In the antigen-devoid tumour, T cells "patrolled" at a consistently high rate (approximately 10 micrometres per minute), at all stages of development. However, T lymphocyte behaviour varied in antigen-containing tumour; when the tumour stopped growing because of the lymphocyte injection three or four days previously, the defenders patrolled slowly (4 micrometres per minute) and halted frequently. Their mean rate reached a plateau at 4 micrometres per minute. Then, during later stages when the tumour was regressing, most T lymphocytes resumed their rapid mobility.

To summarise therefore, the T lymphocyte trajectories were confined to regions containing high levels of live tumour cells, while they were broader and fluid in regions littered with dead tumour cells. The Institut Curie scientists concluded that presence of the antigen halted the T lymphocytes which were then occupied by recognising and killing their adversaries.

Furthermore, by analysing the distribution of T lymphocytes throughout the respective tumours, the scientists noted that these defenders were always present at the periphery, but that the presence of the antigen was essential to in-depth penetration, leading to effective tumour elimination.

These results were validated in two types of experimental tumour generated from two lines of cancer cells.

It is now up to the clinicians to verify whether the in-depth infiltration of T lymphocytes could constitute a criterion for a good prognosis.

A clearer understanding of how the immune system functions is essential to optimise one of the most promising options for future cancer treatment: immune therapy.

For many years now, the Institut Curie has been participating actively in the development of innovative strategies in this field. Two clinical studies are currently under way at the Institute: one in patients with choroidal melanoma and the other in women with cervical cancer.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Cite This Page:

CNRS. "How T Lymphocytes Attack Tumors." ScienceDaily. ScienceDaily, 8 March 2007. <www.sciencedaily.com/releases/2007/02/070226131706.htm>.
CNRS. (2007, March 8). How T Lymphocytes Attack Tumors. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2007/02/070226131706.htm
CNRS. "How T Lymphocytes Attack Tumors." ScienceDaily. www.sciencedaily.com/releases/2007/02/070226131706.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Catching More Than Fish: Ugandan Town Crippled by AIDS

Catching More Than Fish: Ugandan Town Crippled by AIDS

AFP (Apr. 22, 2014) The village of Kasensero on the shores of Lake Victoria was where HIV-AIDS was first discovered in Uganda. Its transient population of fishermen and sex workers means the nationwide programme to combat the virus has had little impact. Duration: 02:30 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins