Featured Research

from universities, journals, and other organizations

Proteasome Activator Enhances Survival Of Huntington's Disease Neuronal Model Cells

Date:
March 1, 2007
Source:
Public Library of Science
Summary:
These remarkable results demonstrate for the first time that it is possible to intervene therapeutically in the proteolytic pathways and organelles that participate in the specific degradation of misfolded and abnormal proteins.

To function, each living cell needs both to build new and to degrade old or damaged proteins. To accomplish that, a number of intracellular systems work in concert to keep the cell healthy and from clogging up with damaged proteins. When proteins or peptides mutate, they can present major problems to the clearing up of the intracellular environment. In Huntington's disease (HD) the disease provoking mutation in the huntingtin gene eventually causes the cell to build up intranuclear and cellular inclusions of protein-aggregates, made up primarily of huntingtin. One cellular organelle with a central role of clearing such protein build up in the cell is the ubiquitin proteasome system (UPS).

Related Articles


In Huntington's disease (HD) brains and other tissues, UPS activity is inhibited and intraneuronal nuclear protein aggregates of mutant huntingtin in HD brains indicate dysfunction of the UPS. From these results, we hypothesized that enhancing UPS function would improve catalytic degradation of abnormal proteins in HD. We first genetically engineered proteasome activators involved in either non-ubiquitinated protein degradation pathways (PA28ƒ×) or subunits of PA700, the 26S proteasome ubiquitinated pathway (S5a) into transducible lentiviral vectors. To address the therapeutic hypothesis experimentally, we transduced UPS subunits into HD skin fibroblasts or HD mutant protein expressing striatum-derived neurons. We determined how this intervention altered cell survival after exposure to toxins known to simulate pathological mechanisms in HD.

The manuscript shows that cellular changes due to expression of huntingtin protein with longer CAG repeats can reduce the ubiquitin proteasome system (UPS) function in Huntingtonˇ¦s disease cells. Following compromise of the UPS, the overexpression of proteasome activator PA28 can specifically recover proteasome function and improve cell viability in both HD model and patient cells.

These remarkable results demonstrate for the first time that it is possible to intervene therapeutically in the proteolytic pathways and organelles that participate in the specific degradation of misfolded and abnormal proteins.

Citation: Seo H, Sonntag K-C, Kim W, Cattaneo E, Isacson O (2007) Proteasome Activator Enhances Survival of Huntingtonˇ¦s Disease Neuronal Model Cells. PLoS ONE 2(2): e238. doi:10.1371/journal.pone.0000238 (http://dx.doi.org/10.1371/journal.pone.0000238 )


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Proteasome Activator Enhances Survival Of Huntington's Disease Neuronal Model Cells." ScienceDaily. ScienceDaily, 1 March 2007. <www.sciencedaily.com/releases/2007/02/070228064850.htm>.
Public Library of Science. (2007, March 1). Proteasome Activator Enhances Survival Of Huntington's Disease Neuronal Model Cells. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2007/02/070228064850.htm
Public Library of Science. "Proteasome Activator Enhances Survival Of Huntington's Disease Neuronal Model Cells." ScienceDaily. www.sciencedaily.com/releases/2007/02/070228064850.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins