Featured Research

from universities, journals, and other organizations

Scientists Gauge Earthquake Hazards Through Study Of Precariously Balance Rocks

Date:
March 3, 2007
Source:
University of Nevada, Reno
Summary:
An exhaustive study by Nevada research team pinpoints several causes and indications of seismic threat in the West.

A group of University researchers recently completed an exhaustive study on precariously balanced rocks such as the one pictured here. (Credit: Image courtesy of University of Nevada, Reno)
Credit: Image courtesy of University of Nevada, Reno

A seismological research team from the University of Nevada, Reno is finding ways to make precariously balanced rocks talk. In so doing, they are unlocking valuable scientific information in assessing seismic hazards in areas throughout the West.

Their findings are shared in the January-February issue of American Scientist magazine. Scientists believe that zones of precarious rocks -- rocks that have come close but haven't tipped over in the wake of a major seismic event -- provide important information about seismic risk, its magnitude and its frequency.

"There's really no long-term data to test seismic hazards other than precarious rocks," said Matthew Purvance, a postdoctoral scholar in geophysics at the University, who authored the article along with James Brune, professor in the Department of Geological Sciences and past director of the Nevada Seismological Laboratory, and Rasool Anooshehpoor, research professor in the Nevada Seismological Laboratory.

"By studying precariously balanced rocks, it can serve as an indicator that an earthquake of a sufficient size to topple a tippy rock has not occurred ... at least for a very long time. We think this is a fundamental story that gives fundamental information on seismic hazards that has never been done before."

The data from the study is important, as it not only tests ground-motion probability, but can help further refine United States Geological Survey hazard methodologies that are used by engineers to formulate building codes. Purvance explained that seismologists and engineers since the late 1960s have increasingly followed a method known as probabilistic seismic-hazard analysis in trying to get a more firm grasp on earthquake probability. This analysis allows researchers to determine the number and magnitude of earthquakes on relevant faults. The study of precarious rocks, which act as "witnesses" to strong seismic events throughout history, has provided scientists an important research window to test the predictions of probability, Purvance said.

The team tested massive rocks of up to 1,000 pounds and more than 10,000 years old, measuring the force and angle it would take to tip them over. One of the more interesting aspects of the study was a technique used by Anooshehpoor, which measured the restoring force that has allowed the rock to remain upright through centuries of wear and the force of past strong seismic events.

Anooshehpoor's technique allowed the team to measure a tipping boulder's restoring force with a digital load cell and the rock's tilt with an inclineometer. The work wasn't easy. By pushing and pulling on the massive, bus-sized rocks with a series of wire cables, nylon straps, chains, pulleys, winches, hydraulic pistons, ground anchors and 4 by 4 blocks of wood, the team was able to record data for precarious rocks that had never been tested before.

"It gives us very useful information about the precarious rocks and further adds to the knowledge of gauging earthquake hazards," Purvance said, noting that it was work by Brune in the early 1990s with precarious rocks in southern California that led to the rocks becoming more widely recognized as an accurate barometer of seismic force and occurrence. "These measurements help better explain the story of how the rock has managed to withstand some of the forces of time and nature."

Added Anooshehpoor: "The rocks that we have studied are from large earthquakes and are so rare. If throughout history the world had tons of instruments and recorded many of these earthquakes, we probably wouldn't have the need to study precarious rocks. The lack of data has been a major problem in estimating ground motion. With this study, we've been provided with another opportunity to give the engineers the right information they need."


Story Source:

The above story is based on materials provided by University of Nevada, Reno. Note: Materials may be edited for content and length.


Cite This Page:

University of Nevada, Reno. "Scientists Gauge Earthquake Hazards Through Study Of Precariously Balance Rocks." ScienceDaily. ScienceDaily, 3 March 2007. <www.sciencedaily.com/releases/2007/02/070228170312.htm>.
University of Nevada, Reno. (2007, March 3). Scientists Gauge Earthquake Hazards Through Study Of Precariously Balance Rocks. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2007/02/070228170312.htm
University of Nevada, Reno. "Scientists Gauge Earthquake Hazards Through Study Of Precariously Balance Rocks." ScienceDaily. www.sciencedaily.com/releases/2007/02/070228170312.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
New Pictures of Ship That Sank in 1888

New Pictures of Ship That Sank in 1888

AP (Apr. 24, 2014) Federal researchers have released new images of the City of Chester, a steamship that sank in San Francisco Bay in 1888. Researchers recently found the shipwreck while mapping shipping routes. (April 24) Video provided by AP
Powered by NewsLook.com
Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins