Featured Research

from universities, journals, and other organizations

Computer-designed Molecule To Clean Up Fluorocarbons?

Date:
March 3, 2007
Source:
National Institute of Standards and Technology
Summary:
The chemical bond between carbon and fluorine is one of the strongest in nature, but researchers at NIST and Philip Morris's Interdisciplinary Network of Emerging Science and Technology group have used "computational chemistry" to design a molecule to pull the fluorine out of fluorocarbons.

Postmortem: Computer modeling rendition of the proposed carbon-fluorine bond-breaking macrocycle after reaction with a molecule of methyl fluoride (CH3F). Highlighted in the center of the macrocycle, the CH3 fragment has attached to a nitrogen atom, separating it from the fluorine atom which has been grabbed by a group of four hydrogen atoms. The potentially toxic components of the fluorocarbon are immobilized in the macrocycle until removed by a second reaction, an important feature for possible filtering systems. (Credit: NIST)
Credit: NIST

The chemical bond between carbon and fluorine is one of the strongest in nature, and has been both a blessing and a curse in the complex history of fluorocarbons. Now, in a powerful demonstration of the relatively new field of "computational chemistry," researchers at the National Institute of Standards and Technology (NIST) and the Interdisciplinary Network of Emerging Science and Technology group (INEST, sponsored by Philip Morris USA) have designed--in a computer--a wholly theoretical molecule to pull the fluorine out of fluorocarbons.*

At sea level, the strong C-F bond makes fluorocarbons thermally and chemically stable. As a result, fluorocarbons have been used in many commercial applications including refrigerants, pesticides and non-stick coatings. In the upper atmosphere, however, high-energy photons and highly reactive ozone molecules can break apart fluorocarbons, with the well-known consequence of a depleted ozone layer and increased ultraviolet radiation at ground level. A determined chemist can break down fluorocarbons at ground level with certain organometallic compounds, but the reactions take a long time at very high temperatures. Other known reagents are both highly toxic and inefficient, so chemists have been searching for an economical and environmentally friendly method to dispose of fluorocarbons.

Reasoning that the problem already may have been solved by nature, the NIST/Philip Morris team looked to an enzyme called fluoroacetate dehalogenase used by a South African bacterium, Burkholderia sp. The enzyme enables the bacterium to pull the fluoride ion out of sodium fluoroacetate (disrupting a poisonous compound) at room temperature and without problematic metal ions. Enzymes are giant molecules, evolved to survive and work in the complex environment of a living organism; they can be difficult and expensive to adapt to an industrial process. Instead, the research team applied basic quantum mechanical theory of electron structures in molecules, together with the example of a known molecule that binds to and extracts chlorine ions, to calculate the make-up and geometry of the critical "active site" in the enzyme that does the work. They then designed in software a large ring-shaped molecule to hold those components in just the right orientation to break the C-F bond in methyl fluoride, a simple fluorocarbon.

Researchers at the University of Texas now are synthesizing the new molecule to test its effectiveness. If it matches theoretical predictions, it will be the first example of a simple organic molecular system able to break C-F bonds without extreme temperature and pressure conditions, and a demonstration of a novel technique for designing man-made molecules that can mimic the extraordinary selectivity and chemical activity of natural enzymes. Notes lead researcher Carlos Gonzalez, "All of these useful things are in nature, you just have to find them and make them more efficient."

* F. Hζffner, M. Marquez and C. Gonzalez. Theoretical evidence for C-F bond activation by a fluoro-calix[4]pyrrole-tert-amine macrocycle. J. Phys. Chem. A 2007, 111, 268-272.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Computer-designed Molecule To Clean Up Fluorocarbons?." ScienceDaily. ScienceDaily, 3 March 2007. <www.sciencedaily.com/releases/2007/03/070302130935.htm>.
National Institute of Standards and Technology. (2007, March 3). Computer-designed Molecule To Clean Up Fluorocarbons?. ScienceDaily. Retrieved August 31, 2014 from www.sciencedaily.com/releases/2007/03/070302130935.htm
National Institute of Standards and Technology. "Computer-designed Molecule To Clean Up Fluorocarbons?." ScienceDaily. www.sciencedaily.com/releases/2007/03/070302130935.htm (accessed August 31, 2014).

Share This




More Matter & Energy News

Sunday, August 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins