Featured Research

from universities, journals, and other organizations

Physicists Slow And Control Supersonic Helium Beam

Date:
March 9, 2007
Source:
University of Texas at Austin
Summary:
The speed of a beam of helium atoms can be controlled and slowed using an "atomic paddle" much as a tennis player uses a racquet to control tennis balls, physicists at the University of Texas at Austin have discovered.

The speed of a beam of helium atoms can be controlled and slowed using an "atomic paddle" much as a tennis player uses a racquet to control tennis balls, physicists at The University of Texas at Austin have discovered.

Related Articles


The slow helium beam technique--a breakthrough in the field of atom optics--could someday be used to better probe microscopic surfaces or create advanced navigation systems.

"The slow beam is an enabling technology," said Dr. Mark Raizen, the Sid W. Richardson Foundation Regents Chair in Physics. "The next step is to do science with the beams."

Raizen and his colleagues at the Center for Nonlinear Dynamics created the slow helium beams using a yard-long, rapidly spinning titanium blade tipped with silicon wafers that Raizen calls an atomic paddle.

He and his colleagues pumped puffs of super-cooled helium gas into a vacuum chamber containing the paddle using supersonic beam technology developed by Professor Uzi Even of Tel-Aviv University. The paddle's silicon wafers reflected the helium atoms much like a glass mirror reflects a beam of light.

Just as the energy of a tennis ball is absorbed by the motion of a tennis racquet, the motion of the paddle absorbed the energy from the helium beam. The beam was slowed to 560 miles per hour, less than one-eighth the normal velocity of helium.

Raizen's slow beam work is important to understanding the interaction between an atom and a surface, a fundamental aspect of physics that has been investigated since the pioneering work of Otto Stern in 1930. Scientists can bounce atoms off a surface and observe the scattered atoms to learn about the properties of the atoms and the surface.

To date, the main disadvantage of using helium to probe surfaces has been that it typically moves very quickly, nearly 4,500 miles per hour at room temperature. When helium hits a surface at a very high velocity, it tends to scatter in many directions, making it more difficult to observe the atoms after impact and limiting its practical use as a probe.

Slow beams could someday be used in advanced navigation systems with gyroscopes, like those found in airplanes, submarines, space probes and the International Space Station. Gyroscopes allow an object to maintain its orientation or balance, even in outer space.

A gyroscope system based on atoms would have a much higher sensitivity than gyroscope systems that use lasers, said Raizen.

He said that the atomic paddle method could be used in the future to produce even slower helium atoms and ultimately to stop and trap them.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Physicists Slow And Control Supersonic Helium Beam." ScienceDaily. ScienceDaily, 9 March 2007. <www.sciencedaily.com/releases/2007/03/070308121155.htm>.
University of Texas at Austin. (2007, March 9). Physicists Slow And Control Supersonic Helium Beam. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2007/03/070308121155.htm
University of Texas at Austin. "Physicists Slow And Control Supersonic Helium Beam." ScienceDaily. www.sciencedaily.com/releases/2007/03/070308121155.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins