Featured Research

from universities, journals, and other organizations

Tiny Clue Reveals New Path Toward Heart Disease

Date:
March 23, 2007
Source:
Duke University Medical Center
Summary:
Geneticists have discovered a new gene that may put individuals at higher risk of developing cardiovascular disease.

Geneticists have discovered a new gene that may put individuals at higher risk of developing cardiovascular disease.

The identification of the gene, called kalirin, implicates a biological mechanism never before linked to cardiovascular disease, according to the Duke researchers who led the study. Further study of this new clue could lead to novel ways to treat or even prevent the disease, the researchers said.

"The ultimate goal is to determine who will develop cardiovascular disease," said lead study investigator Liyong Wang, Ph.D., a research associate at the Duke Center for Human Genetics. "Our discovery could lead to a clinical tool for assessing a person's risk of coronary artery disease, so that physicians can try to prevent the disease from progressing."

Coronary artery disease affects more than 13 million Americans and is one of the nation's leading causes of death. The disease occurs when the arteries supplying blood to the heart become narrowed or clogged by plaque deposits. Left untreated, the disease can completely block the blood flow to the heart, leading to a heart attack.

While risk factors such as smoking, high blood pressure and high cholesterol are known to contribute to coronary artery disease, little is known about genes that render an individual susceptible to developing the disease, said study co-investigator Elizabeth R. Hauser, Ph.D., an associate professor of medicine at the Duke Center for Human Genetics.

In a previous study, the researchers had scanned the entire genome -- the body's genetic blueprint -- of a group of families in which at least two siblings had early onset coronary artery disease, looking for regions of "linkage" where DNA variations appeared to be inherited along with the disease. They found just such a region: a small section of the long arm of chromosome 3 where just a handful of genes were located. Chromosome 3 is one of the 23 pairs of chromosomes that comprise the human genome.

In the current study, the researchers focused on specific gene variants, called single nucleotide polymorphisms (SNPs), that occur when a single nucleotide building block in the long strand of DNA is altered. The researchers sought SNPs that occurred more or less often in individuals with coronary artery disease than in individuals without it, as such a link would indicate that these gene variants were associated with the disease.

The researchers first obtained DNA from 500 patients who had volunteered to be studied while being examined at the cardiac catheterization laboratories at Duke University Hospital. Using these DNA samples, the researchers scanned the same small section of chromosome 3 for SNPs that differed in sequence between individuals with and without coronary heart disease.

One SNP, in the kalirin gene, varied between individuals with heart disease and those without. The researchers repeated the same experiment in four additional patient populations, scanning the DNA of a total of 4,000 individuals, and turned up the same result.

"This finding opens up a whole new area of study for looking at risks of cardiovascular disease," said senior study investigator Jeffrey M. Vance, M.D., Ph.D., director of the Center for Molecular Genetics and Genomic Medicine, Miami Institute for Human Genomics at the Miller School of Medicine.

The researchers are now studying kalirin in the blood vessels to see how variations in the gene contribute to cardiovascular disease.

So far, they have found that this particular SNP is significantly correlated with the degree of atherosclerosis in human aortas, the large blood vessel that brings blood from the heart to all parts of the body.

Kalirin contains the hereditary information for the production of a protein that is involved in the migration of cells from one spot to another within smooth muscle. According to the researchers, the newly identified SNP may change the level of this protein in blood vessels, causing cells to congregate in one spot and form a plaque in the vessels to the heart.

In addition to identifying the genetic variations in the kalirin gene, the researchers also identified two genes that are involved in the same biological pathway, known as the Rho-GTPase signal transduction pathway.

The team, which includes researchers from several universities in the United States and the United Kingdom, reports its findings in the April 2007 issue of American Journal of Human Genetics.

Other researchers participating in the study were Svati H. Shah, Carol Haynes, David R. Crosslin, Marco Harris II, Sarah Nelson, A. Brent Hale and Simon G. Gregory of the Duke Center for Human Genetics; Christopher B. Granger, David Seo and William E. Kraus of the Duke Department of Medicine, Division of Cardiovascular Medicine; Jonathan L. Haines of Vanderbilt University Medical Center in Nashville, Tenn.; Christopher J. H. Jones of the University of Wales College of Medicine, United Kingdom; David C. Crossman of the University of Sheffield, United Kingdom; and Margaret Pericak-Vance and Pascal J. Goldschmidt-Clermont of the University of Miami.

The research was sponsored by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Tiny Clue Reveals New Path Toward Heart Disease." ScienceDaily. ScienceDaily, 23 March 2007. <www.sciencedaily.com/releases/2007/03/070322105305.htm>.
Duke University Medical Center. (2007, March 23). Tiny Clue Reveals New Path Toward Heart Disease. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2007/03/070322105305.htm
Duke University Medical Center. "Tiny Clue Reveals New Path Toward Heart Disease." ScienceDaily. www.sciencedaily.com/releases/2007/03/070322105305.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
Too Few Teens Receiving HPV Vaccination, CDC Says

Too Few Teens Receiving HPV Vaccination, CDC Says

Newsy (July 24, 2014) The Centers for Disease Control and Prevention is blaming doctors for the low number of children being vaccinated for HPV. Video provided by Newsy
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins