Featured Research

from universities, journals, and other organizations

Brain Tissue Reveals Possible Genetic Trigger For Schizophrenia

Date:
March 30, 2007
Source:
University of North Carolina School of Medicine
Summary:
Scientists may have identified a molecular mechanism involved in the development of schizophrenia. In studying the postmortem brain tissue of adults who had been diagnosed with schizophrenia, the researchers found that levels of certain gene-regulating molecules called microRNAs were lower among schizophrenia patients than in persons who were free of psychiatric illness.

A study led by scientists from the University of North Carolina at Chapel Hill may have identified a molecular mechanism involved in the development of schizophrenia.

Related Articles


In studying the postmortem brain tissue of adults who had been diagnosed with schizophrenia, the researchers found that levels of certain gene-regulating molecules called microRNAs were lower among schizophrenia patients than in persons who were free of psychiatric illness.

"In many genetic diseases, such as Huntington's disease or cystic fibrosis, the basis is a gene mutation that leads to a malformed protein. But with other complex genetic disorders -- such as schizophrenia, many cancers, and diabetes -- we find not mutated proteins, but correctly formed proteins in incorrect amounts," said study lead author and UNC professor of psychiatry Dr. Diana Perkins.

The research appears this week in the online edition of the journal Genome Biology. "To our knowledge this study is the first to associate altered expression of microRNAs with schizophrenia," the authors stated.

Since the 1950s, scientists have known that the genetic code stored in DNA is first transcribed into messenger RNA (mRNA) which is then the template from which the body's protein building blocks are made. MicroRNAs are a newly discovered class of mRNA that does not carry the code for a protein. Instead, these tiny strands of RNA act by binding to matching pieces of the protein coding mRNA, thus preventing the translation of mRNA to protein. When a cell needs certain proteins, the microRNAs may disconnect, thus allowing protein expression to resume.

Using postmortem prefrontal cortical brain tissue of people with schizophrenia and persons who had no psychiatric illness, the researchers found for the first time a significant difference in the microRNA expression profile. Fifteen microRNAs were expressed at a lower level and one at a higher level in the brain tissue from persons with schizophrenia. The basic activity of this "executive" brain region is the orchestration of thoughts and actions in accordance with internal goals.

Previous studies have shown that microRNAs play a role in regulating brain development. They also figure importantly in "synaptic plasticity," the ability of neurons to make connections with one another. "And those connections between neurons come and go all the time. It's a normal process for them to be pruned and grow again, depending on what the brain needs to do to interact with the environment," Perkins explained.

"There is growing evidence that schizophrenia may related to disordered synaptic plasticity," she added. "Our study found a striking, significant difference in microRNA expression between people with schizophrenia and healthy people. Using bioinformatic analyses, we found that the distinguishing microRNAs appear to regulate genes involved in synaptic plasticity."

Acknowledging this was a pilot study, Perkins and her colleagues plan further research with larger tissue samples.

Research was supported in part by grants from the National Institutes of Health, the Elsa U. Pardee Foundation, the Foundation of Hope and the American Cancer Society.

Study co-authors at UNC include Dr. Clark Jeffries, research professor in the School of Pharmacy and senior bioinformatics research scientist at the UNC-based Renaissance Computing Institute (RENCI); Dr. L. Fredrik Jarskog, associate professor, department of psychiatry; Dr. J. Michael Thomson, postdoctoral scientist, Keith Woods, research specialist, Martin A. Newman, graduate student, and Dr. Scott M. Hammond, assistant professor, all of the department of cell and developmental biology; and Dr. Jianping Jin, bioinformatics staff scientist, department of molecular biology. Co-author Joel S. Parker is a research bioinformaticist with Constella Group LLC in Durham, N.C.


Story Source:

The above story is based on materials provided by University of North Carolina School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina School of Medicine. "Brain Tissue Reveals Possible Genetic Trigger For Schizophrenia." ScienceDaily. ScienceDaily, 30 March 2007. <www.sciencedaily.com/releases/2007/03/070328155403.htm>.
University of North Carolina School of Medicine. (2007, March 30). Brain Tissue Reveals Possible Genetic Trigger For Schizophrenia. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2007/03/070328155403.htm
University of North Carolina School of Medicine. "Brain Tissue Reveals Possible Genetic Trigger For Schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2007/03/070328155403.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins