Featured Research

from universities, journals, and other organizations

Researcher Examines Polymers Created With Poultry Feathers

Date:
April 10, 2007
Source:
Virginia Tech
Summary:
Justin Barone, associate professor of biological systems engineering at Virginia Tech, is investigating ways to create biodegradable plastics from agricultural byproducts such as poultry feathers and eggs that would be comparable to petroleum-based plastics.

A molded cup made from the feather polymer.
Credit: Courtesy of Dr. Justin Barone, Virginia Tech

Biodegradable polymers created from poultry feathers may add value to the poultry industry and help solve the growing environmental problem of plastic waste.

Related Articles


According to the U.S. Environmental Protection Agency, more than 29 million tons of non-biodegradable plastic waste ends up in landfills each year. Justin Barone, associate professor of biological systems engineering at Virginia Tech, is investigating ways to create biodegradable plastics from agricultural byproducts such as poultry feathers and eggs that would be comparable to petroleum-based plastics. He presented the research at the American Chemical Society National Meeting in Chicago, Ill.

"Twelve percent of all plastic packaging ends up in landfills because only a fraction is recycled," said Barone. "Once in the landfill, it doesn't biodegrade. The challenge is how can we create a simpler plastic bag or bottle that will biodegrade?"

According to Barone, the technology to create biodegradable plastics from biomass, such as corn and soybeans, has been around for more than 70 years. However the recent push to increase energy production from these feedstocks has increased the value of these agricultural commodities, making products made from them more expensive.

Barone has turned his focus to the agricultural waste stream and is concentrating on developing ways to use under-utilized byproducts or agricultural waste, such as poultry feathers or eggs that don't pass inspection. These agricultural wastes currently find uses in low-value animal feed or are simply disposed. Both come at a cost to the poultry industry that is passed onto consumers.

The challenge in developing biodegradable plastics is creating a product as good as, if not better than, its petroleum counterpart, explains Barone. "The industry is looking for a versatile product that can be used for multiple markets."

Plastics made from biomass are made just like petroleum-based plastics. They are cheaper to manufacture and meet or exceed most properties except for water resistance and longevity. Meeting these performance requirements is a challenge, Barone explains.

Barone is taking his lead from nature to find potential solutions to these performance requirements. He is investigating the properties of polymers created from poultry feather keratin. The protein, keratin, is a major component of hair, nails, and feathers and makes them hard and strong.

Barone has found that altering the amino acid structure of keratin can improve the strength and longevity of the polymer. In addition, the viscosity can be improved with reducing agents such as sodium sulfite and lubricants such as poultry fat. The solid-state properties can also be modified using divalent transition metal ions to affect stiffness and smell. These will help the keratin polymer be processed faster, be more aesthetically pleasing, and become water resistant and stronger for increased longevity.

Barone's current research is funded by the U.S. Poultry and Egg Association.

He presented his paper, "Properties of biodegradable feather keratin polymers," as part of the session on Agricultural Biomass, Biobased Products, and Biofuels, sponsored by the ACS Division of Agrochemicals and Division of Fuel Chemistry, Sustainability of Energy, Food, and Water, Division of Cellulose & Renewable Materials, and Division of Chemical Information.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Researcher Examines Polymers Created With Poultry Feathers." ScienceDaily. ScienceDaily, 10 April 2007. <www.sciencedaily.com/releases/2007/03/070329095556.htm>.
Virginia Tech. (2007, April 10). Researcher Examines Polymers Created With Poultry Feathers. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2007/03/070329095556.htm
Virginia Tech. "Researcher Examines Polymers Created With Poultry Feathers." ScienceDaily. www.sciencedaily.com/releases/2007/03/070329095556.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins