Featured Research

from universities, journals, and other organizations

3.2 Billion-year-old Surprise: Earth Had Strong Magnetic Field

Date:
April 5, 2007
Source:
University of Rochester
Summary:
Geophysicists at the University of Rochester announce that the Earth's magnetic field was nearly as strong 3.2 billion years ago as it is today. The findings, which are contrary to previous studies, suggest that even in its earliest stages the Earth was already well protected from the solar wind, which can strip away a planet's atmosphere and bathe its surface in lethal radiation.

Geophysicists at the University of Rochester announce in today's issue of Nature that the Earth's magnetic field was nearly as strong 3.2 billion years ago as it is today.

The findings, which are contrary to previous studies, suggest that even in its earliest stages the Earth was already well protected from the solar wind, which can strip away a planet's atmosphere and bathe its surface in lethal radiation.

"The intensity of the ancient magnetic field was very similar to today's intensity," says John Tarduno, professor of geophysics in the Department of Earth and Environmental Sciences at the University of Rochester. "These values suggest the field was surprisingly strong and robust. It's interesting because it could mean the Earth already had a solid iron inner core 3.2 billion years ago, which is at the very limit of what theoretical models of the Earth's formation could predict."

Geophysicists point to Mars as an example of a planet that likely lost its magnetosphere early in its history, letting the bombardment of radiation from the sun slowly erode its early atmosphere. Theories of Earth's field say it's generated by the convection of our liquid iron core, but scientists have always been curious to know when Earth's solid inner core formed because this process provides an important energy source to power the magnetic field. Scientists are also interested in when Earth's protective magnetic cocoon formed.

But uncovering the intensity of a field 3.2 billion years in the past has proven daunting, and until Tarduno's research, the only data scientists could tease from the rocks suggested the field was perhaps only a tenth as strong as today's.

Tarduno had previously shown that as far back as 2.5 billion years ago, the field was just as intense as it is today, but pushing back another 700 million years in time meant he had to find a way to overcome some special challenges.

The traditional approach to measuring the ancient Earth's magnetic field would not be good enough. The technique was developed more than four decades ago, and has changed little. With the old method, an igneous rock about an inch across is heated and cooled in a chamber that is shielded from magnetic interference. The magnetism is essentially drained from the particles in the rock and then it's refilled while scientists measure how much the particles can hold.

Tarduno, however, isolates choice, individual crystals from a rock, heats them with a laser, and measures their magnetic intensity with a super-sensitive detector called a SQUID—a Superconducting Quantum Interface Device normally used in computing chip design because it's extremely sensitive to the tiniest magnetic fields.

Certain rocks contain tiny crystals like feldspar and quartz—nano-meter sized magnetic inclusions that lock in a record of the Earth's magnetic field as they cool from molten magma to hard rock. Simply finding rocks of this age is difficult enough, but these rocks have also witnessed billions of years of geological activity that could have reheated them and possibly changed their initial magnetic record.

To reduce the chance of this contamination, Tarduno picked out the best preserved grains of feldspar and quartz out of 3.2 billion-year-old granite outcroppings in South Africa. Feldspar and quartz are good preservers of the paleomagnetic record because their minute magnetic inclusions essentially take a snapshot of the field as they cool from a molten state. Tarduno wanted to measure the smallest magnetic inclusions because larger magnetic crystals can lose their original magnetic signature at much lower temperatures, meaning they are more likely to suffer magnetic contamination from later warming geological events.

Once he isolated the ideal crystals, Tarduno employed a carbon dioxide laser to heat individual crystals much more quickly than older methods, further lessening the chance of contamination. With the University's ultra-sensitive SQUID he could measure how much magnetism these individual particles contained.

"The data suggest that the ancient magnetic field strength was at least 50 percent of the present-day field, which typically measures 40 to 60 microteslas," says Tarduno. "This means that a magnetosphere was definitely present, sheltering the Earth 3.2 billion years ago."

To further ensure his readings were accurate, Tarduno also checked the alignment of the magnetism in the particles, which record the polarity of the Earth's field at that time and location. By comparing the polarity to that of other samples of similar age and location, Tarduno could ensure that his measurements were not likely from later geological heating, but truly from 3.2 billion years ago.

Tarduno is now pushing back in time to 3.5 billion-year-old rocks to further investigate when the Earth's inner core first formed, giving new insights into early Earth processes that also may have had an effect on the atmosphere and the development of life on the planet.

Rory Cottrell, post-doctoral student in Tarduno's laboratory, is co-author on the study. This research was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester. "3.2 Billion-year-old Surprise: Earth Had Strong Magnetic Field." ScienceDaily. ScienceDaily, 5 April 2007. <www.sciencedaily.com/releases/2007/04/070404162406.htm>.
University of Rochester. (2007, April 5). 3.2 Billion-year-old Surprise: Earth Had Strong Magnetic Field. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/04/070404162406.htm
University of Rochester. "3.2 Billion-year-old Surprise: Earth Had Strong Magnetic Field." ScienceDaily. www.sciencedaily.com/releases/2007/04/070404162406.htm (accessed July 24, 2014).

Share This




More Earth & Climate News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Observation Boat to Protect Cetaceans During Ship Transfer

Observation Boat to Protect Cetaceans During Ship Transfer

AFP (July 22, 2014) As part of the 14-ship convoy that will accompany the Costa Concordia from the port of Giglio to the port of Genoa, there will be a boat carrying experts to look out for dolphins and whales from crossing the path of the Concordia. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins