Featured Research

from universities, journals, and other organizations

Lab Finds Meth Receptor That Could Lead To New Therapy

Date:
April 19, 2007
Source:
Oregon Health & Science University
Summary:
A recently discovered signaling system in the brain has just been shown to be turned on by methamphetamine. The signaling system could soon become a target for therapies aiming to reverse meth's adverse health effects as well as reduce the craving that drives its abuse.

A recently discovered signaling system in the brain has just been shown to be turned on by methamphetamine, an Oregon Health & Science University study found.

The signaling system could soon become a target for therapies aiming to reverse meth's adverse health effects as well as reduce the craving that drives its abuse.

Working in the recently opened Program in Chemical Biology in the OHSU School of Medicine's Department of Physiology and Pharmacology, scientists demonstrated the new target of meth, and its close relative amphetamine, is a G protein-coupled receptor known as trace amine-associated receptor 1, or TAAR1 for short.

"The Program in Chemical Biology at OHSU is one of the few in the U.S. that allows biologists and chemists to work side-by-side, using their combined skills to identify drug targets and to design new drugs to treat diseases like drug addiction," said David Dawson, Ph.D., OHSU professor and chairman of physiology and pharmacology. "Chemical space -- that is, the number of possible drug molecules that could exist -- is incredibly large. Our aim is to mine that space in order to uncover novel therapies."

TAAR1 was originally discovered in the laboratory of David K. Grandy, Ph.D., OHSU professor of physiology and pharmacology. Grandy's lab found TAAR1 is activated by chemical relatives of meth known as phenylethylamines. The messenger RNA that codes for TAAR1 is expressed throughout the brain, including areas involved in motivation and drug craving, olfaction -- the sense of smell -- and temperature regulation, to name a few.

"With this kind of pharmacological profile and brain distribution, we hypothesized TAAR1 could mediate some of meth's metabolic and behavioral effects," explained Grandy, who also directed the groundbreaking research.

"In our most recent article, we provide clear evidence that methamphetamine is a full and potent agonist of TAAR1. In other words, TAAR1 has the necessary features to be considered a real target of methamphetamine and amphetamine in rodents and probably humans, too."

Grandy added that it's his hope that "these findings will eventually lead to the development of new pharmaceuticals that reduce dependence on and craving for methamphetamine."

Earlier research in the Grandy laboratory demonstrated that meth and amphetamine stimulate the production of an important second messenger known as cyclic adenosine monophosphate, or cAMP, inside cells expressing the rat TAAR1. Encouraged by this observation, Grandy's team explored the effects of these drugs on mouse TAAR1 and a human-rat TAAR1 hybrid and found all three receptors respond in similar ways.

"The results of this study unequivocally demonstrate that meth and amphetamine are able to directly activate this receptor in the laboratory, making it likely that TAAR1 is activated in chronic users of meth," the researchers state in their article, whose lead author is Edmund Reese, a graduate student working in Grandy's laboratory. Other members of the research team include James Bunzow, M.S.; Seksiri Arttamangkul, Ph.D.; and Mark Sonders, Ph.D.

Grandy and his colleagues argue that TAAR1 represents a completely new target for pharmaceutical therapy to treat meth addiction and also reduce the negative manifestations of its abuse.

"Meth addiction is such a problem and we have nothing to treat it with except group support therapy," Grandy said. "Now we have a new target, something completely different to focus on, and we think that offers a lot of hope."

Grandy is actively collaborating with Thomas Scanlan, Ph.D., director of the Program in Chemical Biology who recently relocated to Portland from the University of California, San Francisco. Scanlan's laboratory has synthesized more than 150 new compounds that are being analyzed for their ability to selectively interfere with TAAR1 and block its activity.

"So we're already on a roll," Grandy said. The goal is to "take them to the point where they can be tested in humans."

Still, there's more to be learned about how meth and amphetamine affect the entire TAAR1 signaling system that is composed of six receptor genes in humans. "When you put it all together, what you realize is that meth acts on several signaling systems and that a successful therapeutic treatment will likely require modulation of several targets simultaneously. We still have a lot to learn about how meth affects the body through this system," Grandy said. "We have our work cut out for us."

The study is published in the April edition of the Journal of Pharmacology and Experimental Therapeutics.


Story Source:

The above story is based on materials provided by Oregon Health & Science University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon Health & Science University. "Lab Finds Meth Receptor That Could Lead To New Therapy." ScienceDaily. ScienceDaily, 19 April 2007. <www.sciencedaily.com/releases/2007/04/070418141126.htm>.
Oregon Health & Science University. (2007, April 19). Lab Finds Meth Receptor That Could Lead To New Therapy. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2007/04/070418141126.htm
Oregon Health & Science University. "Lab Finds Meth Receptor That Could Lead To New Therapy." ScienceDaily. www.sciencedaily.com/releases/2007/04/070418141126.htm (accessed August 29, 2014).

Share This




More Mind & Brain News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins