Featured Research

from universities, journals, and other organizations

Solar Power Splits Water Into Hydrogen And Oxygen Using Unique Method

Date:
May 3, 2007
Source:
Washington University in St. Louis
Summary:
Engineers have developed a unique photocatlytic cell that splits water to produce hydrogen and oxygen in water using sunlight and the power of a nanostructured catalyst. The discovery provides a new, low-cost and efficient option for hydrogen production and can be used for a variety of distributed energy applications.

Pratim Biswas and his group have developed a method to make a variety of oxide semiconductors that, when put into water promote chemical reactions that split water into hydrogen and oxygen. The method provides a new low cost and efficient option for hydrogen production.
Credit: David Kilper/WUSTL Photo

Engineers at Washington University in St. Louis have developed a unique photocatalytic cell that splits water to produce hydrogen and oxygen in water using sunlight and the power of a nanostructured catalyst.

Related Articles


The group is developing novel methodologies for synthesis of nanostructured films with superior opto-electronic properties. One of the methods, which sandwiches three semiconductor films into a compact structure on the nanoscale range, is smaller, more efficient and more stable than present photocatalytic methods, which require multiple steps and can take from several hours to a day to complete.

The discovery provides a new, low-cost and efficient option for hydrogen production and can be used for a variety of distributed energy applications.

Pratim Biswas, Ph.D., the Stifel and Quinette Jens Professor and Chair of the Department of Energy, Environmental and Chemical Engineering, and his graduate student Elijah Thimsen, recently have developed the well-controlled, gas phase process, and have demonstrated it for synthesizing a variety of oxide semiconductors such as iron and titanium dioxide films in a single step process. It is based on a simple, inexpensive flame aerosol reactor (FLAR) and consists of four mass flow controllers to regulate process gases, a standard bubbler to deliver a precursor, a metal tube that acts as a burner and a water-cooled substrate holder.

"We put these films in water and they promote some reactions that split water into hydrogen and oxygen," said Biswas. "We can use any oxide materials such as titanium dioxide, tungsten oxide and iron oxide in nanostructures sandwiched together that make very compact structures. The process is direct and takes only a few minutes to fabricate. More important, these processes can be scaled up to produce larger structures in a very cost effective manner in atmospheric pressure processes."

Collaborations have now been established with Dewey Holten, Ph.D., Washington University professor of chemistry in Arts & Sciences, to better understand the electron-hole pair kinetics, information that can then be used to tune the synthesis process. Other collaborations with Robert Blankenship, Ph.D., Washington University professor of biology and chemistry in Arts & Sciences, are being explored to create hybrid bio-nanostructures that will improve the light absorption efficiencies over a broader range of wavelengths. Electrospray and other aerosol techniques are being used to create these hybrid films.

The method was described in a recent issue of SPIE, a publication of the International Society for Optical Engineering.

The research is among the first wave of news out of the new Washington University Department of Energy, Environmental and Chemical Engineering, which performs research on energy and environment, including alternative fuels and energy sources, air quality research, nanoparticle technology and particle emission control, among other topics.

Some of the department faculty — 14 members now, expected to double in five to ten years — are active in the University's ambitious BioEnergy Initiative, which is focused on the development of technologies for the production of next generation biofuels. The adoption of a systems approach will not only enable development processes for large volume production of liquid fuels from plant-based sources, but also at a low cost, and most importantly, in an environmentally benign manner — not only during the production, but also during the actual usage.


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Solar Power Splits Water Into Hydrogen And Oxygen Using Unique Method." ScienceDaily. ScienceDaily, 3 May 2007. <www.sciencedaily.com/releases/2007/05/070502120347.htm>.
Washington University in St. Louis. (2007, May 3). Solar Power Splits Water Into Hydrogen And Oxygen Using Unique Method. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/05/070502120347.htm
Washington University in St. Louis. "Solar Power Splits Water Into Hydrogen And Oxygen Using Unique Method." ScienceDaily. www.sciencedaily.com/releases/2007/05/070502120347.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins