Featured Research

from universities, journals, and other organizations

New Unattended Water Sensor Capable Of 24/7 Detection Of Toxins, Bacteria In Water Supplies

Date:
May 17, 2007
Source:
Sandia National Laboratories
Summary:
Scientists develop a method for constantly monitoring water for biological pathogens including biotoxins, bacteria, viruses, and protozoa. Sandia's unattended water sensor has successfully undergone testing at a large Bay Area water utility for more than a year and, just recently, has been deployed to a municipal water station in Arizona for additional observation and adjustments.

Sandia engineer Marci Markel displays the inside of the unattended water sensor. The UWS diagnostic instrumentation package is composed of analytic instruments, pumps, tubes, and small reservoirs to handle minute amounts of fluid. The technology is largely based on Sandia's well-known ΅ChemLab.
Credit: Image courtesy of Sandia National Laboratories

In late 2004, Sandia National Laboratories announced a multiyear research agreement with Tenix Investments Pty. Ltd., a partnership that offered the vision of a safer future for the nation’s water supplies. The collaboration aspired to develop a method for constantly monitoring water for biological pathogens including biotoxins, bacteria, viruses, and protozoa. Now, just two-and-a-half years into the project, Sandia researchers have a working device in place and have demonstrated that the initial dream is, indeed, now a reality.

Sandia’s unattended water sensor (UWS) has successfully undergone testing at a large Bay Area water utility for more than a year and, just recently, has been deployed to a municipal water station in Arizona for additional observation and adjustments. Staff will perform periodic maintenance and troubleshooting on the system, which is expected to further demonstrate the viability of unattended water monitoring.

“The initial research and development was focused on defining the system, identifying its core capability, and developing a concrete tool that does what we wanted it to do,” said Chris Macintosh, Tenix Investment’s engineering manager. “Having now met those objectives and proven the capability of the technology, the next phase of the design will be to take this knowledge and develop a product suitable for use by the water industry.” Macintosh said that other applications for the UWS include monitoring of agricultural water for contaminants, as well as water provided to sports stadiums and other venues.

Sandia engineer Marci Markel displays the inside of the unattended water sensor. The UWS diagnostic instrumentation package is composed of analytic instruments, pumps, tubes, and small reservoirs to handle minute amounts of fluid. The technology is largely based on Sandia’s well-known ΅ChemLab.

Field-deployable detection technologies in the nation’s water supplies have become a high priority in recent years. “Biological monitoring devices are essential to assess the type and extent of contamination in a suspected water security event,” according to an upcoming report by the National Research Council’s Water Science and Technology Board. “A broader range of innovative and developing detection technologies for biological agents, including methods that are field deployable. . . should be considered and evaluated,” the report asserts.

Sandia’s UWS (measuring 17 inches high by 14 inches wide by 7 inches deep) is a box composed of analytic instruments, pumps, tubes, and small reservoirs to handle minute amounts of fluid. The reservoirs, playfully referred to by Sandia researchers as the “juice bar,” contain chemical buffers, fluorescent dyes, proteins, and separation gel. This innovative diagnostic instrumentation package, based on Sandia’s well-known MicroChemLab technology, is mounted near the water supply. The box is connected to a small, submerged probe that transports the sample into the system.

Largely due to the automated sample preparation that is the hallmark of the device, the UWS is currently able to achieve sample analysis in just 12 minutes — a marked improvement over the original goal of 30 minutes or less.

According to Brent Haroldsen, who serves as Sandia’s lead engineer on the project, the UWS is currently able to detect protein toxins such as SEB, botulinum, and ricin. Haroldsen said the next phase of the Sandia activities will be to expand the device’s detection capability to include bacteria such as E. coli and protozoa such as Cryptosporidium.

“To detect those kinds of pathogens, we will incorporate more advanced sample preparation techniques, which we have already developed for other projects,” said Haroldsen. “This requires us to solubilize, or “break up” the cell into individual proteins. Detecting organisms also requires improved signature recognition capability to accommodate their natural variation.”

Sandia researchers, said Haroldsen, need to configure a working database of organism signatures to allow them to accurately distinguish the signatures from one another. He and his Sandia colleagues are looking at algorithm approaches that will help define the level of specificity the UWS will be able to achieve. One such method, for example, is the Bayesian approach (Bayesian analysis, according to the International Society for Bayesian Analysis, is a well-known approach to data analysis that casts statistical problems in the framework of decision making). Haroldsen says that the technology used in the UWS could clearly discriminate between types of organisms such as bacteria or viruses, “as long as we appropriately account for their natural variability.”

Victoria VanderNoot, an analytical chemist at Sandia who serves as the UWS project’s lead scientist, also noted the cost-savings advantages that come with using proteins to differentiate between organisms. “It gets us away from having to use expensive primers or antibodies, which are needed with other techniques like polymerase chain reaction (PCR) or immunoassay,” she points out.

Haroldsen says that ensuring the reliability of the components used to develop this prototype — which are small and intricate — is a challenge that he and his colleagues have embraced with gusto. Sandia invented many of the components, such as a suite of microfluidic fittings, manifolds, and interconnects, because no commercial products were available to reproducibly handle slight amounts of fluids.

The UWS is expected to operate for at least three months in Arizona. Sandia and its partners would then like to bring the system to an Environmental Protection Agency facility or the U.S. Army’s Edgewood Chemical Biological Center, where it can be tested in a real-world environment that includes analysis on bona fide toxic agents situated in authentic water supply conditions. Currently, analysis is conducted in both situations individually (i.e., in a laboratory setting at Sandia or in water supply facilities in Arizona or the Bay Area), but not simultaneously.

“We’ve made really good progress and have proven that the concept works,” Haroldsen said. “We’re proud of what we’ve been able to achieve.”


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "New Unattended Water Sensor Capable Of 24/7 Detection Of Toxins, Bacteria In Water Supplies." ScienceDaily. ScienceDaily, 17 May 2007. <www.sciencedaily.com/releases/2007/05/070515184306.htm>.
Sandia National Laboratories. (2007, May 17). New Unattended Water Sensor Capable Of 24/7 Detection Of Toxins, Bacteria In Water Supplies. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/05/070515184306.htm
Sandia National Laboratories. "New Unattended Water Sensor Capable Of 24/7 Detection Of Toxins, Bacteria In Water Supplies." ScienceDaily. www.sciencedaily.com/releases/2007/05/070515184306.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) — Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) — AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) — Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins