Featured Research

from universities, journals, and other organizations

In A First, Scientists Develop Tiny Implantable Biocomputers

Date:
May 22, 2007
Source:
Harvard University
Summary:
Researchers at Harvard University and Princeton University have made a crucial step towards building biological computers, tiny implantable devices that can monitor the activities and characteristics of human cells. The information provided by these "molecular doctors," constructed entirely of DNA, RNA, and proteins, could eventually revolutionize medicine by directing therapies only to diseased cells or tissues.

This work is a crucial step towards building biological computers, tiny implantable devices that can monitor the activities and characteristics of human cells.
Credit: Kobi Benenson

Researchers at Harvard University and Princeton University have made a crucial step toward building biological computers, tiny implantable devices that can monitor the activities and characteristics of human cells. The information provided by these "molecular doctors," constructed entirely of DNA, RNA, and proteins, could eventually revolutionize medicine by directing therapies only to diseased cells or tissues.

"Each human cell already has all of the tools required to build these biocomputers on its own," says Harvard's Yaakov (Kobi) Benenson, a Bauer Fellow in the Faculty of Arts and Sciences' Center for Systems Biology. "All that must be provided is a genetic blueprint of the machine and our own biology will do the rest. Your cells will literally build these biocomputers for you."

Evaluating Boolean logic equations inside cells, these molecular automata will detect anything from the presence of a mutated gene to the activity of genes within the cell. The biocomputers' "input" is RNA, proteins, and chemicals found in the cytoplasm; "output" molecules indicating the presence of the telltale signals are easily discernable with basic laboratory equipment.

"Currently we have no tools for reading cellular signals," Benenson says. "These biocomputers can translate complex cellular signatures, such as activities of multiple genes, into a readily observed output. They can even be programmed to automatically translate that output into a concrete action, meaning they could either be used to label a cell for a clinician to treat or they could trigger therapeutic action themselves."

Benenson and his colleagues demonstrate in their Nature Biotechnology paper that biocomputers can work in human kidney cells in culture. Research into the system's ability to monitor and interact with intracellular cues such as mutations and abnormal gene levels is still in progress.

Benenson and colleagues including Ron Weiss, associate professor of electrical engineering at Princeton, have also developed a conceptual framework by which various phenotypes could be represented logically.

A biocomputer's calculations, while mathematically simple, could allow researchers to build biosensors or medicine delivery systems capable of singling out very specific types or groups of cells in the human body. Molecular automata could allow doctors to specifically target only cancerous or diseased cells via a sophisticated integration of intracellular disease signals, leaving healthy cells completely unaffected.

Benenson and Weiss worked in collaboration with undergraduate Keller Rinaudo, postdoctoral researcher Leonidas Bleris, and summer intern Rohan Maddamsetti, all at Harvard, and with Sairam Subramanian, a graduate student at Princeton. Their research is supported by Harvard University and a center grant from the National Institute of General Medical Sciences. The results will be published in the journal Nature Biotechnology.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "In A First, Scientists Develop Tiny Implantable Biocomputers." ScienceDaily. ScienceDaily, 22 May 2007. <www.sciencedaily.com/releases/2007/05/070521140917.htm>.
Harvard University. (2007, May 22). In A First, Scientists Develop Tiny Implantable Biocomputers. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2007/05/070521140917.htm
Harvard University. "In A First, Scientists Develop Tiny Implantable Biocomputers." ScienceDaily. www.sciencedaily.com/releases/2007/05/070521140917.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) — Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com
Cultural Learning In Wild Chimps Observed For The First Time

Cultural Learning In Wild Chimps Observed For The First Time

Newsy (Oct. 1, 2014) — Cultural transmission — the passing of knowledge from one animal to another — has been caught on camera with chimps teaching other chimps. Video provided by Newsy
Powered by NewsLook.com
Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) — A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Annual Dog Surfing Competition Draws California Crowds

Annual Dog Surfing Competition Draws California Crowds

AFP (Sep. 30, 2014) — The best canine surfers gathered for Huntington Beach's annual dog surfing competition, "Surf City, Surf Dog." Duration: 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins