Featured Research

from universities, journals, and other organizations

Physicists Devise Viable Design For Spin-Based Electronics

Date:
June 2, 2007
Source:
University of California, San Diego
Summary:
Physicists have proposed a design for a semiconductor computer circuit based on the spin of electrons. They say the device would be more scalable and have greater computational capacity than conventional silicon circuits. The "spintronic"--or spin-based electronic--device would extend the scope of conventional electronics by encoding information with the magnetic--or spin--state of electrons, in addition to the charge of the electrons. The researchers used a novel geometry to overcome the weakness of the magnetic signal, the current limitation to developing spintronics in silicon semiconductors.

Diagram of spin-based electronic system developed by UCSD
Credit: Image courtesy of University of California, San Diego

Physicists at the University of California, San Diego have proposed a design for a semiconductor computer circuit based on the spin of electrons. They say the device would be more scalable and have greater computational capacity than conventional silicon circuits.

The “spintronic”—or spin-based electronic—device, described this week in the journal Nature, would extend the scope of conventional electronics by encoding information with the magnetic—or spin—state of electrons, in addition to the charge of the electrons. The researchers used a novel geometry to overcome the weakness of the magnetic signal, the current limitation to developing spintronics in silicon semiconductors.

“The breakthrough of our research is the device geometry, the way it is activated, and the way it could be integrated in electronic circuits,” said Lu J. Sham, a professor of physics at UCSD and the senior author on the paper. “All of these features are novel and our results show for the first time a spin-based semiconductor circuit.”

One advantage of spintronics is that it shrinks the size of the circuit that is needed to perform a given logic operation. The researchers say that their proposed device has other important advantages compared with conventional electronics.

“Spin-based electronic devices allow the construction of reprogrammable circuits without hindering performance,” explained Hanan Dery a postdoctoral fellow working with Sham and the lead author on the paper. “This will allow flexible electronic devices which fit into any application while providing the best performance. For example, the same circuit can serve as i-Pod, cellular phone, microprocessor, et cetera.”

The proposed spintronic circuit is an interconnected series of logic gates. Each logic gate consists of five magnetic contacts lying on top of a semiconductor layer. The magnetic state of each of these contacts, determined by the electrons’ spins, corresponds to the “0” and “1” in each bit of information. The logic operation is performed by moving electrons between four of the magnetic contacts and the semiconductor. The result of the operation is read by the fifth magnetic contact.

The proposed device has not yet been made, but according to the researchers it should be feasible with currently available technology.

“We are using only experimentally-verified constraints,” said Sham. “We have presented our results to experimentalists in the field of spin electronics. They claimed that the realization of this device is within reach.”

Other contributors to the study were P. Dalal and L. Cywinski. The study was supported by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California, San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California, San Diego. "Physicists Devise Viable Design For Spin-Based Electronics." ScienceDaily. ScienceDaily, 2 June 2007. <www.sciencedaily.com/releases/2007/06/070601181850.htm>.
University of California, San Diego. (2007, June 2). Physicists Devise Viable Design For Spin-Based Electronics. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/06/070601181850.htm
University of California, San Diego. "Physicists Devise Viable Design For Spin-Based Electronics." ScienceDaily. www.sciencedaily.com/releases/2007/06/070601181850.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins