Featured Research

from universities, journals, and other organizations

New Plant-bacterial Symbiotic Mechanism Promising For Crop Applications

Date:
June 6, 2007
Source:
Institut de Recherche Pour le Développement
Summary:
Researchers are examining an unusual symbiotic association, between an aquatic leguminous plant, Aeschynomene and photosynthetic bacteria of the genus Bradyrhizobium. Genomic studies on bacterial strains revealed an absence of nod genes, usually involved in the symbiotic mechanisms of all known rhizobia bacteria. This remarkable result calls into question the universally accepted theory envisaging just one exclusive mode of nodulation initiation.

Transverse section of a nodule of stem of Aeschynomene sensitiva.
Credit: IRD/Eric Giraud

The growth of most plants depends on the presence of sufficient amounts of nitrogen contained in the soil. However, a family of plants, the legumes, is partially free of this constraint thanks to its ability to live in association with soil bacteria of the Rhizobium, genus, capable of fixing nitrogen from the air. When these bacteria come into contact with their host plant, they trigger in the roots the formation and development of organs, termed nodules, where they continue to live. This close relationship is symbiosis, which benefits both organisms involved: the plant supplies nutritive elements to the bacteria which in return pass on the nitrogen they have stored up.

These interactions improve crop yields of leguminous plants that are crucial for human diet (soybean, peas, ground nuts and so on...) and as animal feed (alfalfa, clover, sainfoin). In addition, cultivation of legumes living in symbiotic association with bacteria can contribute to vegetation regeneration schemes on soils depleted in nitrogen owing to overexploitation, erosion or desertification. The plant cover thus formed can help achieve ecological restoration, by enriching the soils in nitrogen. However, the symbiotic processes studied predominantly concern the leguminous plants of temperate zones, very little those of the tropics.

The team from the IRD's 'Laboratoire des Symbioses Tropicales et Méditerranéennes' and its partners  taking as model a symbiosis between a tropical aquatic legume, Aeschynomene, and Bradyrhizobium, bacteria of the Rhizobia family, have just revealed a new mode of communication at molecular level between these two organisms. The bacteria of this original model have their own photosynthetic pathway, a unique property in the rhizobia. This special character confers on it the exceptional, rare ability to form nodules on the stems of its host-plant. The plant thus acquires the possibility of fixing much higher quantities of nitrogen than those usually measured in leguminous plants which have nodules only on their roots.

The researchers sequenced the genes of two bacterial strains of Bradyrhizobium, ORS278 and BTAi1, in order to find out their genetic make-up and identify the genes involved in this rather special form of symbiosis. These bacteria were found to have no nod genes, usually essential for nodulation. Bradyrhizobium consequently appeared to use mechanisms that involved other genes. This surprising result calls into question the universally recognized model of molecular communication that initiates the rhizobia-legume symbiosis. This common model requires the presence of several nod genes which allow synthesis of the Nod factor, a compound elaborated by the bacterium which enables the plant to recognize it, by molecular recognition, thereby allowing the microorganism to penetrate inside the plant by the root hairs.

The finding raises the question as to what signalling pathway Bradyrhizodium might use to gain entry to the plant and set off nodulation.

The first observation was that the bacteria did not penetrate the roots of its host-plant by the hairs. It took advantage of "crack zones" comparable with wound areas. The set of results obtained from subsequent work, seeking to identify the genes involved in producing the unknown signal molecule that plays the role of Nod factor, prompted the team's hypothesis that a molecule similar to a plant hormone , cytokinin, could act in the mechanisms by triggering nodulation. The discovery of the nature of the signal molecule itself, which remains to be fully determined, brings a glimpse of future agricultural applications.

Many plants live in symbiosis with bacteria, but the mechanisms are known for only a small number of these interactions. The demonstration of alternative pathways capable of triggering the nodulation signal in certain rhizobia is promising for future techniques for bringing these bacteria into association with different leguminous plants. It therefore becomes possible to increase agricultural production of a greater number of important plants, notably in tropical countries, while cutting down the use of fertilizers.


Story Source:

The above story is based on materials provided by Institut de Recherche Pour le Développement. Note: Materials may be edited for content and length.


Cite This Page:

Institut de Recherche Pour le Développement. "New Plant-bacterial Symbiotic Mechanism Promising For Crop Applications." ScienceDaily. ScienceDaily, 6 June 2007. <www.sciencedaily.com/releases/2007/06/070605121013.htm>.
Institut de Recherche Pour le Développement. (2007, June 6). New Plant-bacterial Symbiotic Mechanism Promising For Crop Applications. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/06/070605121013.htm
Institut de Recherche Pour le Développement. "New Plant-bacterial Symbiotic Mechanism Promising For Crop Applications." ScienceDaily. www.sciencedaily.com/releases/2007/06/070605121013.htm (accessed July 31, 2014).

Share This




More Plants & Animals News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) — Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) — With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) — Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins