Featured Research

from universities, journals, and other organizations

Aging Stem Cells In Mice May Hold Answers To Diseases Of The Aged, Stanford Study Finds

Date:
June 7, 2007
Source:
Stanford University Medical Center
Summary:
As stem cells in the blood grow older, genetic mutations accumulate that could be at the root of blood diseases that strike people as they age, according to work done in mice by researchers at the Stanford University School of Medicine.

As stem cells in the blood grow older, genetic mutations accumulate that could be at the root of blood diseases that strike people as they age, according to work done in mice by researchers at the Stanford University School of Medicine.

"This and our previous work points out why older people are more likely to get blood diseases, such as leukemia or anemia, and are less likely to make new antibodies that would protect against infections like the flu," said senior author Irving Weissman, MD, director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine and of the Stanford Comprehensive Cancer Center. The work will be published in the June 6 issue of Nature.

In past studies, this group of researchers had shown that blood-forming stem cells in the bone marrow of mice became less able to divide and replenish the supply of blood cells as they aged. The question was why.

Researchers have put forward many theories about how cells age, said Derrick Rossi, PhD, postdoctoral scholar and co-first author of the paper. One of those theories has to do with cells accumulating genetic mutations. "The idea is that, over time, accumulated DNA damage progressively diminishes the cell's ability to perform its normal function," he said.

However, researchers had thought that mutations were unlikely to underlie aging in blood-forming stem cells because they very rarely divide, and most mutations crop up during division. The infrequent divisions were believed to protect the cells from acquiring new mutations.

Rossi, Weissman and the other first author, postdoctoral scholar David Bryder, PhD, tested that idea in two different sets of experiments. In the first, they studied the blood-forming stem cells of mice engineered to have single mutations that make them especially prone to accumulating additional genetic errors. In each of the three different types of mutant mice they studied, the stem cells appeared to behave normally and to produce new blood cells.

However, the full truth came out when they took blood-forming stem cells from any of the three types of mice and used those cells to repopulate the bone marrow of irradiated mice. This type of experiment is much like using a bone marrow transplant to bring back the bone marrow in a person who has undergone extensive chemotherapy.

Normally, a few stem cells are enough to completely replenish the bone marrow of mice and produce normal amounts of blood and immune cells. However, error-filled blood-forming stem cells taken from the mutant mice were much less effective at colonizing the depleted bone marrow than normal stem cells, and became even less effective when taken from older mutant mice.

Rossi said these results suggest that mutations accumulating in stem cells as they age were preventing them from doing their normal job of producing new blood and immune system cells. However, these results were in mutant mice. Rossi wanted to know if the stem cells in normal, healthy mice also accumulate damage as they age.

To address this, in the second set of experiments, Rossi isolated stem cells from the bone marrow of normal young and old mice, then stained those cells with a chemical that clings to a protein that's associated with DNA damage. This protein can act as a flag to highlight nearby DNA damage.

What he found is that young stem cells from normal mice contained no stain and therefore little or no DNA damage. Older stem cells, on the other hand, showed extensive staining.

All of this adds up to one thing: blood-forming stem cells do accumulate DNA damage with age even though they rarely divide, and that damage is passed on to the blood and immune system cells they make. Weissman said these findings could explain the origin of blood cancer (leukemia) and immune dysfunctions that occur as people age.

The next step is to show whether these results from mice hold true for human blood-forming stem cells. "If this work does extrapolate to humans, then it is absolutely consistent with the idea that blood-forming stem cells are the breeding ground for pre-leukemic mutations," said Weissman, the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research.

Additional Stanford researchers who contributed to this work include postdoctoral scholar Jun Seita, MD, PhD.

Funding for this study came from the National Cancer Institute's Center for Cancer Research, the Damon Runyon Cancer Foundation, the California Institute of Regenerative Medicine, a Swedish Medical Research Council scholarship (STINT) and a Cancerfonden grant.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Aging Stem Cells In Mice May Hold Answers To Diseases Of The Aged, Stanford Study Finds." ScienceDaily. ScienceDaily, 7 June 2007. <www.sciencedaily.com/releases/2007/06/070606235409.htm>.
Stanford University Medical Center. (2007, June 7). Aging Stem Cells In Mice May Hold Answers To Diseases Of The Aged, Stanford Study Finds. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2007/06/070606235409.htm
Stanford University Medical Center. "Aging Stem Cells In Mice May Hold Answers To Diseases Of The Aged, Stanford Study Finds." ScienceDaily. www.sciencedaily.com/releases/2007/06/070606235409.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins