Featured Research

from universities, journals, and other organizations

Speed Bumps Less Important Than Potholes For Graphene

Date:
July 16, 2007
Source:
National Institute of Standards and Technology
Summary:
Researchers have created detailed maps of electron interference patterns in graphene to understand how defects in the two-dimensional carbon crystal affect charge flow through the material. The results have implications for the design of graphene-based nanoelectronics.

Comparison of an STM topographic image of a section of graphene sheet (top left) with spectroscopy images of electron interference at three different energies shows strong interference patterns generated by atomic scale defects in the graphene crystal (red arrows) but only modest disturbances caused by larger scale bumps in the sheet (blue arrows.) Analysis of the ripples shows that the electron energy in graphene is inversely proportional to its wavelength, just like light waves. The area imaged is approximately 40 nanometers square.
Credit: NIST/Georgia Tech

For electrical charges racing through an atom-thick sheet of graphene, occasional hills and valleys are no big deal, but the potholes--single-atom defects in the crystal--they're killers. That's one of the conclusions reached by researchers from the National Institute of Standards and Technology (NIST) and the Georgia Institute of Technology who created detailed maps of electron interference patterns in graphene to understand how defects in the two-dimensional carbon crystal affect charge flow through the material.

Related Articles


The results, appearing in the July 13 issue of Science*, have implications for the design of graphene-based nanoelectronics.

A single layer of carbon atoms tightly arranged in a honeycomb pattern, graphene was long thought to be an interesting theoretical concept that was impossible in practice--it would be too unstable, and crumple into some other configuration.

The discovery, in 2004, that graphene actually could exist touched off a rush of experimentation to explore its properties. Graphene has been described as a carbon nanotube unrolled, and shares some of the unique properties of nanotubes. In particular, it's a so-called ballistic conductor, meaning that electrons flow through it at high speed, like photons through a vacuum, with virtually no collisions with the atoms in the crystal. This makes it a potentially outstanding conductor for wires and other elements in nanoscale electronics.

Defects or irregularities in the graphene crystal, however, can cause the electrons to bounce back or scatter, the equivalent of electrical resistance, so one key issue is just what sort of defects cause scattering, and how much? To answer this, the NIST-Georgia Tech team grew layers of graphene on wafers of silicon carbide crystals and mapped the sheets with a custom-built scanning tunneling microscope (STM) in the NIST Center for Nanoscale Science and Technology that can measure both physical surface features and the interference patterns caused by electrons scattering in the crystal. (Graphene on silicon carbide is a leading candidate for graphene-based nanoelectronics.)

The results are counter-intuitive. Irregularities in the underlying silicon carbide cause bumps and dips in the graphene sheet that lies over it rather like a blanket on a lumpy bed, but these relatively large bumps have only a minor effect on the electron's passage. In contrast, missing carbon atoms in the crystal lattice cause strong scattering, the interference patterns rippling around them like waves hitting the piles of a pier. From a detailed analysis of these interference patterns, the team verified that electrons in the graphene sheet behave like photons, even at the nanometer scale.

This work is supported in part by the Office of Naval Research, National Science Foundation, and Intel Research.

* G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First and J.A. Stroscio. Scattering and interference in epitaxial graphene. Science 13 July 2007.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Speed Bumps Less Important Than Potholes For Graphene." ScienceDaily. ScienceDaily, 16 July 2007. <www.sciencedaily.com/releases/2007/07/070713131450.htm>.
National Institute of Standards and Technology. (2007, July 16). Speed Bumps Less Important Than Potholes For Graphene. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2007/07/070713131450.htm
National Institute of Standards and Technology. "Speed Bumps Less Important Than Potholes For Graphene." ScienceDaily. www.sciencedaily.com/releases/2007/07/070713131450.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Obama Reveals Nuclear Breakthrough on Landmark India Trip

Reuters - News Video Online (Jan. 25, 2015) In a glow of bonhomie, U.S. President Barack Obama and Indian Prime Minister Narendra Modi unveil a deal aimed at unlocking billions of dollars in nuclear trade. Pavithra George reports. Video provided by Reuters
Powered by NewsLook.com
NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins