Featured Research

from universities, journals, and other organizations

Sleep-Wake Controls Identified: Implications For Coma Patients And Those Under Anesthesia

Date:
July 26, 2007
Source:
University of Arkansas for Medical Sciences
Summary:
How do we wake up? How do we shift from restful sleep to dreaming? Researchers have discovered a new brain mechanism that just might explain how we do that. This new mechanism also may help us understand how certain anesthetics put us to sleep and how certain stimulants wake us up.

Edgar Garcia-Rill, Ph.D., a professor of neurobiology and developmental sciences in the UAMS College of Medicine and director of the Center for Translational Neuroscience

How do we wake up? How do we shift from restful sleep to dreaming? Researchers at the University of Arkansas for Medical Sciences (UAMS) have discovered a new brain mechanism that just might explain how we do that. This new mechanism also may help us understand how certain anesthetics put us to sleep and how certain stimulants wake us up.

Related Articles


In their first published study on this topic, researchers in the UAMS Center for Translational Neuroscience found that some neurons in the reticular activating system, a region of the brain that controls sleep-wake states, are electrically coupled.

“By finding drugs for increasing the electrical coupling of these cells, we create a stronger pathway for potential sleep-wake control,” said study author Edgar Garcia-Rill, Ph.D., a professor of neurobiology and developmental sciences in the UAMS College of Medicine and director of the Center for Translational Neuroscience.

“The possible clinical applications range from the ability to wake people up from anesthesia more rapidly, to stimulating someone in a comatose state to awaken if there are enough of these cells left alive to couple them,” Garcia-Rill said.

The study, “Evidence for Electrical Coupling in the SubCoeruleus (SubC) Nucleus,” documenting this cellular new mechanism, was published in the April issue of the Journal of Neurophysiology. In June, the research team presented additional findings at the annual meeting of the Associated for Professional Sleep Societies in Minneapolis.

The researchers found that neurons in the SubCoeruleus nucleus, a part of the brain believed to control the phase of deep sleep known as rapid-eye-movement (REM) sleep, joined in a way that allowed them to transmit electrical activity across the cells. The activity occurred spontaneously or could be induced by chemical agents that induce REM sleep.

The research article was accompanied by an editorial that called the finding "seminal" in the field of sleep-wake research. The editorial was written by peers Matthew Ennis of the Department of Anatomy and Neurobiology at the University of Tennessee Health Center in Memphis and Subimal Datta of the Department of Psychiatry and Behavioral Neuroscience at the Boston University School of Medicine.

“The findings of [the researchers] provide novel and exciting avenues for understanding sleep-wake control as well as for the treatment of sleep and arousal disorders,” wrote Ennis and Datta in the editorial.

Lead author of the study was David S. Heister, a graduate student pursuing a combined medical and doctoral degree in the Department of Neurobiology and Developmental Sciences of the UAMS Graduate School and UAMS College of Medicine.

Joining Heister and Garcia-Rill are Abdallah Hayar, Ph.D., and Amanda Charlesworth, Ph.D., UAMS faculty members in the Department of Neurobiology and Developmental Sciences and researchers in the Center for Translational Neuroscience; Charlotte Yates, Ph.D., from the Department of Physical Therapy at the University of Central Arkansas; and former UAMS faculty member Yi-Hong Zhou, Ph.D., of the University of California-Irvine.

The researchers pointed to earlier work with animal models showing that stimulation of a specific region of the brain, the reticular activating system, produced electrical activity similar to that seen during waking and REM sleep. In studying the SubCoeruleus region of the brain, the researchers detected the presence of electrical coupling of cells, a mechanism that may help the brain switch between the sleep and waking states. The presence of electrical coupling between these cells offers a potential pathway for substances that could better regulate the sleep-wake control, Garcia-Rill said.

The electroencephalogram, or EEG, of the waking brain shows fast rhythms of 10-60 cycles per second, while the sleeping brain cycles at frequencies below 10 per second. Electrical coupling would allow many cells to fire together, generating a rhythm that is transmitted to other parts of the brain to induce changes in sleep-wake states. In collaboration with the chemical transmitters that control the firing rates in individual cells, the two mechanisms could generate any of the frequencies seen in the EEG. Some anesthetics are known to block gap junctions, the channels by which electrical coupling takes place, while some stimulants increase electrical coupling.


Story Source:

The above story is based on materials provided by University of Arkansas for Medical Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas for Medical Sciences. "Sleep-Wake Controls Identified: Implications For Coma Patients And Those Under Anesthesia." ScienceDaily. ScienceDaily, 26 July 2007. <www.sciencedaily.com/releases/2007/07/070721192754.htm>.
University of Arkansas for Medical Sciences. (2007, July 26). Sleep-Wake Controls Identified: Implications For Coma Patients And Those Under Anesthesia. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2007/07/070721192754.htm
University of Arkansas for Medical Sciences. "Sleep-Wake Controls Identified: Implications For Coma Patients And Those Under Anesthesia." ScienceDaily. www.sciencedaily.com/releases/2007/07/070721192754.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins