Featured Research

from universities, journals, and other organizations

Novel Approach For Rapid Identification And Development Of Malaria Vaccines

Date:
July 28, 2007
Source:
Public Library of Science
Summary:
Malaria is the world’s most frequent parasitic disease, affecting more than 100 countries in the tropical zones, mostly in Africa, and 40% of the world population, with more than a million deaths per year. The development of a vaccine constitutes a major scientific and health challenge. Recent research has established a novel approach for the rapid discovery and development of vaccine candidates.

Malaria is the world’s most frequent parasitic disease, affecting more than 100 countries in the tropical zones, mostly in Africa, and 40% of the world population, with more than a million deaths per year. As a consequence countries affected by malaria also tend to be economically disadvantaged.

The development of a vaccine constitutes a major scientific and health challenge. Research conducted at the Biochemistry Department of the University of Lausanne, Switzerland, has established a novel approach for the rapid discovery and development of vaccine candidates.

The malaria parasites injected through the bite of an infected female mosquito first develop in the liver and then in the blood. Clinical symptoms are associated with the latter stage and no vaccine is currently available.

The development of an antibody-based vaccine to stop the proliferation of the parasite in the blood is thus clearly needed. The few candidates already tested or in the development process were identified over 20 years ago.

Taking advantage of the recently sequenced parasite genome, together with bioinformatics and peptide synthesis, Dr Giampietro Corradin’s group, University of Lausanne, Switzerland, in close collaboration with Dr Andrey Kajava, University of Montpellier, France, has developed a novel approach for the rapid identification of malaria vaccine candidates.

This approach is based on a bioinformatics selection of hundreds of short -helical coiled coil protein segments (30-40 amino acids long) which are able to maintain their conformation once they are chemically synthesized. In the first round of selection, all of 95 peptides synthesized were shown to be recognized by sera from malaria immune donors.

Purified human antibodies specific to a dozen of these peptides could effectively inhibit parasite growth in vitro. Due to the rapidity of the identification and manufacturing process, time and cost to enter new vaccine candidates in clinical trials can be drastically reduced.

This research was conducted in collaboration with the Pasteur Institute, Paris, France, the Swiss Tropical Institute, Basel, Switzerland, CNLRP, Ouagadougou, Burkina Faso and the University of Valle, Cali, Colombia.

The paper appears in the July 25 issue of PLoS One.

Citation: Villard V, Agak GW, Frank G, Jafarshad A, Servis C, et al (2007) Rapid Identification of Malaria Vaccine Candidates Based on a-Helical Coiled Coil Protein Motif. PLoS ONE 2(7): e645. doi:10.1371/journal.pone.0000645 (http://www.plosone.org/doi/pone.0000645)


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Novel Approach For Rapid Identification And Development Of Malaria Vaccines." ScienceDaily. ScienceDaily, 28 July 2007. <www.sciencedaily.com/releases/2007/07/070725093640.htm>.
Public Library of Science. (2007, July 28). Novel Approach For Rapid Identification And Development Of Malaria Vaccines. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2007/07/070725093640.htm
Public Library of Science. "Novel Approach For Rapid Identification And Development Of Malaria Vaccines." ScienceDaily. www.sciencedaily.com/releases/2007/07/070725093640.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins