Featured Research

from universities, journals, and other organizations

Nanoparticle Technique Could Lead To Improved Semiconductors

Date:
August 9, 2007
Source:
University of Texas at Austin
Summary:
Devices made from plastic semiconductors, like solar cells and light-emitting diodes, could be improved based on information gained using a new nanoparticle technique.

Microscopic image of nanoparticles of the plastic semiconductor material F8BT.
Credit: Image courtesy of Dr. Rodrigo Palacios / University of Texas at Austin

Devices made from plastic semiconductors, like solar cells and light-emitting diodes (LEDs), could be improved based on information gained using a new nanoparticle technique developed at The University of Texas at Austin.

Related Articles


As electrical charges travel through plastic semiconductors, they can be trapped much like a marble rolling on a bumpy surface becomes trapped in a deep hole. These traps of charges are known as "deep traps," and they are not well understood.

Deep traps can be desired, as in the case of plastic semiconductors used for memory devices, but they can also decrease the efficiency of the material to conduct electrical charges. In the case of solar cells, deep traps can decrease the efficiency of the conversion of light into electricity.

To further explore the deep trap phenomenon, a group of scientists led by Professors of Chemistry and Biochemistry Paul Barbara and Allen Bard developed a single-particle technique to study small portions of semiconductor material at the nanoscale.

"Our results strongly suggest that deep traps are formed in plastic semiconductors by a charge induced chemical reaction," says Dr. Rodrigo Palacios, lead author and post-doctoral fellow at the Center for Nano and Molecular Science and Technology. "These traps were not there in the uncharged pristine material."

Deep traps could be caused by defects in the semiconductor material--either native to the material or introduced impurities--with special properties that encourage charge trapping. The traps also could develop over the life of the semiconductor.

Previous techniques used to study deep traps have generally involved completed semiconductor devices, which Palacios says creates complications due to the complexity of a functional device.

For the current study, Palacios used a conjugated polymer (plastic semiconductor) material known as F8BT, which is commercially available and has promising applications in organic LEDs and solar cells.

He produced particles of F8BT with diameters about one-ten thousandth that of a human hair. He then shone light on the nanoparticles and measured changes in intensity of the resulting fluorescence. (This type of semiconductor material takes in light energy and releases part of this energy as light of a different color.)

Palacios observed deep traps forming as he electrochemically charged and discharged the semiconductor nanoparticles. The deep traps led to decreases in light emission from the material.

"With our new technique, we got detailed information on how these deep traps are formed and how long they live," says Palacios. "In principle, this kind of information can be used to improve devices made out of these conjugated polymers, designing new materials that can avoid these deep traps or materials that might be able to form these deep traps better."

The scientists reported their findings in the advanced online issue of the journal Nature Materials.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Nanoparticle Technique Could Lead To Improved Semiconductors." ScienceDaily. ScienceDaily, 9 August 2007. <www.sciencedaily.com/releases/2007/08/070806112624.htm>.
University of Texas at Austin. (2007, August 9). Nanoparticle Technique Could Lead To Improved Semiconductors. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2007/08/070806112624.htm
University of Texas at Austin. "Nanoparticle Technique Could Lead To Improved Semiconductors." ScienceDaily. www.sciencedaily.com/releases/2007/08/070806112624.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Smartphone Giants Unveil Latest Models at Technology Show

Smartphone Giants Unveil Latest Models at Technology Show

AFP (Mar. 2, 2015) Mobile providers have been unveiling their upcoming models at the Mobile World Congress in Barcelona, showing off the latest in smartphone technology. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
The Tech Challenges Facing Automakers

The Tech Challenges Facing Automakers

Reuters - Business Video Online (Mar. 2, 2015) This year&apos;s The International Motor Show is getting underway in Geneva. As Sonia Legg reports its taking place as Europe&apos;s beleaguered car industry finally starts showing signs of picking up. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins