Featured Research

from universities, journals, and other organizations

MIT Creates 3-D Images Of Living Cell

Date:
August 13, 2007
Source:
Massachusetts Institute of Technology
Summary:
A new imaging technique has allowed scientists to create the first 3-D images of a living cell, using a method similar to the X-ray CT scans doctors use to see inside the body. Using the new technique, scientists have created three-dimensional images of cervical cancer cells, showing internal cell structures. They've also imaged C. elegans, a small worm, as well as several other cell types.

Images of a cervical cancer cell taken using a new imaging technique developed at MIT. Figures a and b show 3D images of the cell. The green structures represent the nucleolus. The nucleus, not visible in these images, surrounds the nucleolus. The red areas are unidentified cell organelles. Figures c through h show the 2D images from which the 3D images were generated. In these images, each color represents a different range of refractive index
Credit: Michael Feld laboratory, MIT

A new imaging technique developed at MIT has allowed scientists to create the first 3D images of a living cell, using a method similar to the X-ray CT scans doctors use to see inside the body.

The technique, described in a paper published in the Aug. 12 online edition of Nature Methods, could be used to produce the most detailed images yet of what goes on inside a living cell without the help of fluorescent markers or other externally added contrast agents, said Michael Feld, director of MIT's George R. Harrison Spectroscopy Laboratory and a professor of physics.

"Accomplishing this has been my dream, and a goal of our laboratory, for several years," said Feld, senior author of the paper. "For the first time the functional activities of living cells can be studied in their native state."

Using the new technique, his team has created three-dimensional images of cervical cancer cells, showing internal cell structures. They've also imaged C. elegans, a small worm, as well as several other cell types.

The researchers based their technique on the same concept used to create three-dimensional CT (computed tomography) images of the human body, which allow doctors to diagnose and treat medical conditions. CT images are generated by combining a series of two-dimensional X-ray images taken as the X-ray source rotates around the object.

"You can reconstruct a 3D representation of an object from multiple images taken from multiple directions," said Wonshik Choi, lead author of the paper and a Spectroscopy Laboratory postdoctoral associate.

Cells don't absorb much visible light, so the researchers instead created their images by taking advantage of a property known as refractive index. Every material has a well-defined refractive index, which is a measure of how much the speed of light is reduced as it passes through the material. The higher the index, the slower the light travels.

The researchers made their measurements using a technique known as interferometry, in which a light wave passing through a cell is compared with a reference wave that doesn't pass through it. A 2D image containing information about refractive index is thus obtained.

To create a 3D image, the researchers combined 100 two-dimensional images taken from different angles. The resulting images are essentially 3D maps of the refractive index of the cell's organelles. The entire process took about 10 seconds, but the researchers recently reduced this time to 0.1 seconds.

The team's image of a cervical cancer cell reveals the cell nucleus, the nucleolus and a number of smaller organelles in the cytoplasm. The researchers are currently in the process of better characterizing these organelles by combining the technique with fluorescence microscopy and other techniques.

"One key advantage of the new technique is that it can be used to study live cells without any preparation," said Kamran Badizadegan, principal research scientist in the Spectroscopy Laboratory and assistant professor of pathology at Harvard Medical School, and one of the authors of the paper. With essentially all other 3D imaging techniques, the samples must be fixed with chemicals, frozen, stained with dyes, metallized or otherwise processed to provide detailed structural information.

"When you fix the cells, you can't look at their movements, and when you add external contrast agents you can never be sure that you haven't somehow interfered with normal cellular function," said Badizadegan.

The current resolution of the new technique is about 500 nanometers, or billionths of a meter, but the team is working on improving the resolution. "We are confident that we can attain 150 nanometers, and perhaps higher resolution is possible," Feld said. "We expect this new technique to serve as a complement to electron microscopy, which has a resolution of approximately 10 nanometers."

Other authors on the paper are Christopher Fang-Yen, a former postdoctoral associate; graduate students Seungeun Oh and Niyom Lue; and Ramachandra Dasari, principal research scientist at the Spectroscopy Laboratory.

The research was conducted at MIT's Laser Biomedical Research Center and funded by the National Institutes of Health and Hamamatsu Corporation.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "MIT Creates 3-D Images Of Living Cell." ScienceDaily. ScienceDaily, 13 August 2007. <www.sciencedaily.com/releases/2007/08/070812173253.htm>.
Massachusetts Institute of Technology. (2007, August 13). MIT Creates 3-D Images Of Living Cell. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2007/08/070812173253.htm
Massachusetts Institute of Technology. "MIT Creates 3-D Images Of Living Cell." ScienceDaily. www.sciencedaily.com/releases/2007/08/070812173253.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins