Featured Research

from universities, journals, and other organizations

Scientists Retrace Evolution With First Atomic Structure Of An Ancient Protein

Date:
August 20, 2007
Source:
University of Oregon
Summary:
Scientists have determined for the first time the atomic structure of an ancient protein, revealing in unprecedented detail how genes evolved their functions. The structures allowed the scientists to identify exactly how the new function evolved.

Scientists have determined for the first time the atomic structure of an ancient protein, revealing in unprecedented detail how genes evolved their functions.

Related Articles


"Never before have we seen so clearly, so far back in time," said project leader Joe Thornton, an evolutionary biologist at the University of Oregon. "We were able to see the precise mechanisms by which evolution molded a tiny molecular machine at the atomic level, and to reconstruct the order of events by which history unfolded."

A detailed understanding of how proteins -- the workhorses of every cell -- have evolved has long eluded evolutionary biologists, in large part because ancient proteins have not been available for direct study. So Thornton and Jamie Bridgham, a postdoctoral scientist in his lab, used state-of-the-art computational and molecular techniques to re-create the ancient progenitors of an important human protein.

Thornton then collaborated with University of North Carolina biochemists Eric Ortlund and Matthew Redinbo, who used ultra-high energy X-rays from a stadium-sized Advanced Photon Source at Argonne National Laboratory near Chicago to chart the precise position of each of the 2,000 atoms in the ancient proteins. The groups then worked together to trace how changes in the protein's atomic architecture over millions of years caused it to evolve a crucial new function -- uniquely responding to the hormone that regulates stress.

"This is the ultimate level of detail," Thornton said. "We were able to see exactly how evolution tinkered with the ancient structure to produce a new function that is crucial to our own bodies today. Nobody's ever done that before."

The researchers focused on the glucocorticoid receptor (GR), a protein in humans and other vertebrates that allows cells to respond to the hormone cortisol, which regulates the body's stress response. The scientists' goal was to understand the process of evolution behind the GR's ability to specifically interact with cortisol.

They used computational techniques and a large database of modern receptor sequences to determine the ancient GR's gene sequence from a time just before and just after its specific relationship with cortisol evolved. The ancient genes -- which existed more than 400 million years ago -- were then synthesized, expressed, and their structures determined using X-ray crystallography, a state-of-the art technique that allows scientists to see the atomic architecture of a molecule. The project represents the first time the technique has been applied to an ancient protein.

The structures allowed the scientists to identify exactly how the new function evolved. They found that just seven historical mutations, when introduced into the ancestral receptor gene in the lab, recapitulated the evolution of GR's present-day response to cortisol. They were even able to deduce the order in which these changes occurred, because some mutations caused the protein to lose its function entirely if other "permissive" changes, which otherwise had a negligible effect on the protein, were not in place first.

"These permissive mutations are chance events. If they hadn't happened first, then the path to the new function could have become an evolutionary road not taken," Thornton said. "Imagine if evolution could be rewound and set in motion again: a very different set of genes, functions and processes might be the outcome."The atomic structure revealed exactly how these mutations allowed the new function to evolve. The most radical one remodeled a whole section of the protein, bringing a group of atoms close to the hormone. A second mutation in this repositioned region then created a tight new interaction with cortisol. Other earlier mutations buttressed particular parts of the protein so they could tolerate this eventual remodeling.

"We were able to walk through the evolutionary process from the distant past to the present day," said Ortlund, who is now at Emory University in Atlanta. "Until now, we've always had to look at modern proteins and just guess how they evolved."

The work involving the protein is detailed in a paper appearing online Aug. 16 in Science Express, where the journal Science promotes selected research in advance of regular publication.

The work was funded by multiple grants from the National Institutes of Health and the National Science Foundation, the UNC Lineberger Comprehensive Cancer Center and an Alfred P. Sloan Research Fellowship to Thornton.


Story Source:

The above story is based on materials provided by University of Oregon. Note: Materials may be edited for content and length.


Cite This Page:

University of Oregon. "Scientists Retrace Evolution With First Atomic Structure Of An Ancient Protein." ScienceDaily. ScienceDaily, 20 August 2007. <www.sciencedaily.com/releases/2007/08/070816143825.htm>.
University of Oregon. (2007, August 20). Scientists Retrace Evolution With First Atomic Structure Of An Ancient Protein. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2007/08/070816143825.htm
University of Oregon. "Scientists Retrace Evolution With First Atomic Structure Of An Ancient Protein." ScienceDaily. www.sciencedaily.com/releases/2007/08/070816143825.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins