Featured Research

from universities, journals, and other organizations

Understanding How Obese Fat Cells Work

Date:
August 30, 2007
Source:
American Society for Biochemistry and Molecular Biology
Summary:
In obese individuals, fat cells are bloated and inflamed because they receive too many nutrients, including lipids. In these cells, various components cannot work properly anymore and, instead, they activate new proteins to cope with the situation. One of the most challenged organelles in obese fat cells is a maze-like compartment called the endoplasmic reticulum (ER) that makes proteins and lipid droplets and senses the amount of nutrients that enter the cell.

In obese individuals, fat cells are bloated and inflamed because they receive too many nutrients, including lipids. In these cells, various components cannot work properly anymore and, instead, they activate new proteins to cope with the situation. One of the most challenged organelles in obese fat cells is a maze-like compartment called the endoplasmic reticulum (ER) that makes proteins and lipid droplets and senses the amount of nutrients that enter the cell.

Margaret F. Gregor and Gokhan S. Hotamisligil review current knowledge about how the ER works in fat cells and is modified in obesity. They show that when a fat cell receives too many nutrients, the ER is overwhelmed and triggers a process called the unfolded protein response (UPR). This process is one of many cellular responses that activate proteins that increase inflammation and can even result in the death of the cell. UPR also causes insulin resistance, a condition in which the production and function of insulin -- a hormone produced by the pancreas -- is impaired and blood sugar is too high.

The scientists show that by better understanding how the ER works, it may be possible to devise a therapy that enhances the function of the ER and maybe improve the health of obese people. Already, two molecules that protect the ER from obesity-related stress have shown some success in mice. Called PBA and TUDCA, the molecules decreased blood sugar and insulin levels and improved overall response to insulin production.

ER stress may also be reduced by targeting molecules involved in the UPR process. For example, a drug called Salubrinal was recently shown to inhibit one of the UPR-involved molecules and to protect cells from ER stress-induced cell death. Also, there is emerging evidence that anti-diabetic drugs may also work, at least in part, through this mechanism.

A deeper knowledge of how fat cells become dysfunctional will be critical in devising successful therapies in the future, the scientists conclude.

Article: "Adipocyte stress: the endoplasmic reticulum and metabolic disease," by Margaret F. Gregor and Gokhan S. Hotamisligil


Story Source:

The above story is based on materials provided by American Society for Biochemistry and Molecular Biology. Note: Materials may be edited for content and length.


Cite This Page:

American Society for Biochemistry and Molecular Biology. "Understanding How Obese Fat Cells Work." ScienceDaily. ScienceDaily, 30 August 2007. <www.sciencedaily.com/releases/2007/08/070827184840.htm>.
American Society for Biochemistry and Molecular Biology. (2007, August 30). Understanding How Obese Fat Cells Work. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2007/08/070827184840.htm
American Society for Biochemistry and Molecular Biology. "Understanding How Obese Fat Cells Work." ScienceDaily. www.sciencedaily.com/releases/2007/08/070827184840.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins