Featured Research

from universities, journals, and other organizations

3-D Fruit Fly Images To Benefit Brain Research

Date:
September 13, 2007
Source:
Public Library of Science
Summary:
Scientists have used an imaging technique called optical projection tomography (OPT) to image individual cavities within the brain of an aging fly and see the brain deteriorate. The OPT images could help to speed up genetic research into Alzheimer's and other human diseases affecting brain cells.

“Side on: A 3D image of a fruit fly generated using optical projection tomography generated after first bleaching the fly’s exoskeleton. Different organs can be clearly seen. The images mean scientists no longer have to dissect the flies by hand to observe how genetic changes influence the loss of brain cells.”
Credit: Public Library of Science

The fragile head and brain of a fly are not easy things to examine but MRC scientists have figured out how to make it a little simpler. And they hope their research will shed light on human disease.

Related Articles


Using an imaging technique, originally developed at the MRC Human Genetics Unit, called optical projection tomography (OPT) they have generated startling 3D images of the inside of a fruit fly for the first time. The OPT images could help to speed up genetic research into Alzheimer's and other human diseases that affect brain cells.

Dr Mary O'Connell of the MRC Human Genetics Unit who led the research explained: ''Neurodegeneration, the gradual loss of function of brain cells that occurs in Alzheimer's, Parkinson's and motor neurone diseases, isn't a strictly human phenomenon. Insects are affected by it too. In the autumn, bees and wasps often develop erratic behaviour before they die.''

Because the fruit fly (Drosophila melanogaster) and human share many genes with similar functions, the fly is widely used by genetic researchers to study how genes influence human disease.

''It's already known that defects in the equivalent fly genes involved in human brain diseases cause brain cells in fruit flies to lose function as they age,'' Dr O'Connell continued.

OPT could help researchers to look at how the fly brain changes in response to alterations in the normal activity of a specific gene without the risk of damaging tissue through dissection.

In a paper published in the September 5 issue of journal PLoS One, the team describes how they have already used the technique to image individual cavities within the brain of an ageing fly and see the brain deteriorate.

MRC PhD student Leeanne McGurk who captured many of the OPT images explained why the technique works: ''The dark colour of the fly exoskeleton prevents us from seeing inside it using a standard light microscope. In the past this has meant scientists have had to tease apart fruit fly tissues by hand -- a laborious process. Now, we have got over the problem by bleaching the fly exoskeleton. When the fruit fly becomes colourless it is possible to use imaging techniques not only to view its internal organs but to generate 2D and 3D images of the entire fly. ''

Using OPT images in this way will allow scientists to visualise where and how the products of selected genes are present in the fly. These patterns of gene expression, as they are known, will help to identify genes that control parts of the central nervous system and so provide detailed information about the human brain.

Bleaching of the exoskeleton to clear away the colour also allows images to be generated using other microscopic techniques that depend on penetration of light.

Dr O'Connell concluded: ''This research is not simply limited to the study of conditions like Alzheimer's but can also be used to study fly anatomy. The shape and size of organs can be affected by diseases like diabetes so imaging may yield clues to further our understanding of other conditions too.''

The team, including Dr. Liam Keegan at the MRC Human Genetics Unit in Edinburgh collaborated with scientists working on the Systems Biology Program at Centre de Regulacio Genomica, Barcelona, Spain.

Citation: McGurk L, Morrison H, Keegan LP, Sharpe J, O'Connell MA (2007) Three-Dimensional Imaging of Drosophila melanogaster. PLoS ONE 2(9):e834. doi:10.1371/journal.pone.0000834


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "3-D Fruit Fly Images To Benefit Brain Research." ScienceDaily. ScienceDaily, 13 September 2007. <www.sciencedaily.com/releases/2007/09/070904214419.htm>.
Public Library of Science. (2007, September 13). 3-D Fruit Fly Images To Benefit Brain Research. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2007/09/070904214419.htm
Public Library of Science. "3-D Fruit Fly Images To Benefit Brain Research." ScienceDaily. www.sciencedaily.com/releases/2007/09/070904214419.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins