Featured Research

from universities, journals, and other organizations

Specific Brain Protein Required For Nerve Cell Connections To Form And Function

Date:
September 10, 2007
Source:
University of North Carolina at Chapel Hill
Summary:
Neurons, or nerve cells, communicate with each other through contact points called synapses. When these connections are damaged, communication breaks down, causing the messages that would normally help our feet push our bike pedals or our mind locate our car keys to fall short. Scientists have now shown that a protein called neurexin is required for nerve cell connections to form and function correctly.

Neurons, or nerve cells, communicate with each other through contact points called synapses. When these connections are damaged, communication breaks down, causing the messages that would normally help our feet push our bike pedals or our mind locate our car keys to fall short.

Now scientists at the University of North Carolina at Chapel Hill School of Medicine have shown that a protein called neurexin is required for these nerve cell connections to form and function correctly.

The discovery, made in Drosophila fruit flies may lead to advances in understanding autism spectrum disorders, as recently, human neurexins have been identified as a genetic risk factor for autism.

"This finding now gives us the opportunity to see what job neurexin performs within the cell, so that we can gain a better insight into what can go wrong in the nervous system when neurexin function is lost" said Dr. Manzoor Bhat, associate professor of cell and molecular physiology in the UNC School of Medicine and senior author of the study.

The study, published online September 6, 2007, in the journal Neuron, is the first to successfully demonstrate in a Drosophila model the consequences that mutating this important protein may have on synapses.

During the last decade, scientists have learned that neurexins are integral to the transmission of chemical signals within the nervous system. Neurexins interact with binding partners called neuroligins to link neighboring nerve cells together so that signals can be sent and received correctly.

Previous attempts to study these proteins in animal models have been challenging. In vertebrates such as mice, three different genes code for the production of certain neurexin proteins. Deleting just one of these genes causes no adverse effects in mouse models, while removing all three is fatal. But fruit flies have only one gene for neurexin, and when Bhat and colleagues deleted the gene, the flies survived -- barely.

"Knocking out neurexin basically resulted in a fly with defective nervous system" said Bhat, also a member of the UNC Neuroscience Center and the UNC Neurodevelopmental Disorders Research Center.

First of all, the mutated fruit flies had trouble moving around. When the researchers examined the synapses in these flies, they found that half of them were gone. The synapses that remained were deformed, causing them to send out less chemical signals. The researchers, led by Jingjun Li, a graduate student in neurobiology in the UNC School of Medicine, concluded that neurexin is required for the growth of synapses, for the maintenance of their structure and for their function.

Currently, Bhat and other scientists are working to identify the proteins that neurexin binds to, how they interact, and what sequence of events ultimately results in the organization of synapses within nerve cells. The hope is that such studies in Drosophila will one day clarify the role neurexin plays in learning and memory, ultimately leading to a better understanding of how defects in this protein can lead to human disorders such as autism, Bhat said.

Study co-authors include James Ashley and Vivian Budnik from the University of Massachusetts Medical School.

The research was supported in part by grants from the National Institute of General Medical Sciences, National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health and funds from the state of North Carolina.


Story Source:

The above story is based on materials provided by University of North Carolina at Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina at Chapel Hill. "Specific Brain Protein Required For Nerve Cell Connections To Form And Function." ScienceDaily. ScienceDaily, 10 September 2007. <www.sciencedaily.com/releases/2007/09/070905123832.htm>.
University of North Carolina at Chapel Hill. (2007, September 10). Specific Brain Protein Required For Nerve Cell Connections To Form And Function. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2007/09/070905123832.htm
University of North Carolina at Chapel Hill. "Specific Brain Protein Required For Nerve Cell Connections To Form And Function." ScienceDaily. www.sciencedaily.com/releases/2007/09/070905123832.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins