Featured Research

from universities, journals, and other organizations

Scientists Harvest Answers From Genome Of Grain Fungus

Date:
September 13, 2007
Source:
Michigan State University
Summary:
Evil forces thrive in an unstable environment. At least, that's the picture being painted in the first waves of data being reaped from the genome sequence of the fungal plant pathogen, Fusarium graminearum. The sequencing has provided scientists a road map to someday combat a fungus that infects wheat and barley crops, rendering them unusable.

An infected wheat plant shows symptoms of Fusarium graminearum.
Credit: Photos courtesy of Frances Trail

Evil forces thrive in an unstable environment.

Related Articles


At least, that's the picture being painted in the first waves of data being reaped from the genome sequence of the fungal plant pathogen, Fusarium graminearum. The sequencing has provided scientists a road map to someday combat a fungus that infects wheat and barley crops, rendering them unusable.

In the Sept. 7 edition of the journal Science, Frances Trail, Michigan State University associate professor of plant biology and of plant pathology, and Jonathan Walton, professor in the MSU-Department of Energy (DOE) Plant Research Laboratory, joined scientists around the world in picking over the inner workings of the fungus. The discovery: The real estate in some parts of the chromosomes, where many switches of disease and toxins reside, is unstable. Other areas of the chromosomes, where basic metabolism and other vital functions dwell, are stable.

"Those unstable areas are places where the organism is ready to evolve," Trail said. "In those genes there's a lot of mutation. They can change a lot without killing the fungus. The genes that are involved in basic metabolism can't change without killing the fungus.

"We're starting to see this kind of a pattern as genomes have been looked at. It tells us something about what makes a pathogen a pathogen."

Understanding the layout of the genome is a high-stakes proposition. This fungus is a serious pathogen of wheat and barley in Michigan and throughout the Midwest. It causes Fusarium head blight, which reduces grain yields, and taints grain with mycotoxins that have been found to be detrimental to human and animal health.

Fusarium begins its blighting ways as pinprick-sized pods that spit spores into the air. The spores float over grain fields, landing on flowering wheat and barley. The spores colonize the wheat flowers. The often cool, wet weather of the Midwest provides an ideal environment for the fungus to take hold.

The result: fields of blight, identified by withered, bleached heads of grain. At harvest, many of the grains are shrunken and white, and harbor the mycotoxins.

The fungal plant pathogen has some 14,000 genes sequenced. Trail said the roles of some of them are understood, including which ones help form the spores or help produce toxins. Trail's team figures that there are 2,000 genes dedicated to making the spores.

"Those spores have to get out to cause the new disease cycle," she said. "If we can figure out that whole mechanism, it's likely that we can figure out a way to control it."

Understanding the sequence is the first step in the process. From there, the task is understanding the makeup of the genes -- where they're strong and organized, where they're unstable and ready to change strategy. For instance, Trail wonders if that flexibility in the pathogenic-holding parts of the chromosome is the reason this fungus can produce so many different mycotoxins -- including zearalenone, which can mimic sex hormones in mammals, including possibly people, and potentially cause developmental and reproductive problems.

The research was funded by a joint program between the U.S. Department of Agriculture, the National Science Foundation and the DOE as well as supported by the Michigan Agricultural Experiment Station. The sequencing was performed at the Broad Institute at MIT.

Walton's lab helped annotate the completed genome -- that is, inspect a subset of the 14,000 gene sequences for accuracy and then compare them to genes in other organisms. In this way, they identified genes that Fusarium has that are lacking in related fungi that aren't pathogenic on plants.

"This gives us additional clues as to what Fusarium needs to be a pathogen, which we hope will lead to new strategies to control the disease."


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "Scientists Harvest Answers From Genome Of Grain Fungus." ScienceDaily. ScienceDaily, 13 September 2007. <www.sciencedaily.com/releases/2007/09/070906144105.htm>.
Michigan State University. (2007, September 13). Scientists Harvest Answers From Genome Of Grain Fungus. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2007/09/070906144105.htm
Michigan State University. "Scientists Harvest Answers From Genome Of Grain Fungus." ScienceDaily. www.sciencedaily.com/releases/2007/09/070906144105.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Giant Panda Goes Walkabout in Southwest China

Giant Panda Goes Walkabout in Southwest China

AFP (Mar. 6, 2015) — A giant panda goes walkabout alone at night in southwest China. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Lack of Snow Pushes Alaska Sled Dog Race North

Lack of Snow Pushes Alaska Sled Dog Race North

AP (Mar. 6, 2015) — A shortage of snow has forced Alaska&apos;s Iditarod Trail Sled Dog Race to move 300 miles north to Fairbanks. The ceremonial start through downtown Anchorage will take place this weekend, using snow stockpiled earlier this winter. (March 6) Video provided by AP
Powered by NewsLook.com
Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) — Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) — A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins