Featured Research

from universities, journals, and other organizations

Accepted Notion Of Neutron's Electrical Properties Overturned By New Research

Date:
September 18, 2007
Source:
University of Washington
Summary:
For two generations of physicists, it has been a standard belief that the neutron, an electrically neutral elementary particle and a primary component of an atom, actually carries a positive charge at its center and an offsetting negative charge at its outer edge. But new research finds the neutron actually carries a negative charge at its center and outer edge, with a positive charge in between.

For two generations of physicists, it has been a standard belief that the neutron, an electrically neutral elementary particle and a primary component of an atom, actually carries a positive charge at its center and an offsetting negative charge at its outer edge.

The notion was first put forth in 1947 by Enrico Fermi, a Nobel laureate noted for his role in developing the first nuclear reactor. But new research by a University of Washington physicist shows the neutron's charge is not quite as simple as Fermi believed.

Using precise data recently gathered at three different laboratories and some new theoretical tools, Gerald A. Miller, a UW physics professor, has found that the neutron has a negative charge both in its inner core and its outer edge, with a positive charge sandwiched in between to make the particle electrically neutral.

"Nobody realized this was the case," Miller said. "It is significant because it is a clear fact of nature that we didn't know before. Now we know it."

The discovery changes scientific understanding of how neutrons interact with negatively charged electrons and positively charged protons. Specifically, it has implications for understanding the strong force, one of the four fundamental forces of nature (the others are the weak force, electromagnetism and gravity).

The strong force binds atomic nuclei together, which makes it possible for atoms, the building blocks of all matter, to assemble into molecules.

"We have to understand exactly how the strong force works, because it is the strongest force we know in the universe," Miller said.

The findings are based on data collected at the Thomas Jefferson National Accelerator Facility in Newport News, Va., the Bates Linear Accelerator at the Massachusetts Institute of Technology and the Mainz Microtron at Johannes Gutenberg University in Germany.

The three labs examine various aspects of the properties and behavior of subatomic particles, and Miller studied data they collected about neutrons. His analysis was published online Sept. 13 in Physical Review Letters. The work was funded in part by the U.S. Department of Energy.

Since the analysis is based on data gathered from direct observations, the picture could change even more as more data are collected, Miller said.

"A particle can be electrically neutral and still have properties related to charge. We've known for a long time that the neutron has those properties, but now we understand them more clearly," he said.

He noted that the most important aspect of the finding confirms that a neutron carries a negative charge at its outer edge, a key piece of Fermi's original idea.

The strong force that binds atomic nuclei is related to nuclear energy and nuclear weapons, and so it is possible the research could have practical applications in those areas.

It also could lend to greater understanding of the interactions that take place in our sun's nuclear furnace, and a greater understanding of the strong force in general, Miller said.

"We already know that without the strong force you wouldn't have atoms -- or anything else that follows from atoms," he said.

This research was published online Sept. 13 in Physical Review Letters. The work was funded in part by the U.S. Department of Energy.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University of Washington. "Accepted Notion Of Neutron's Electrical Properties Overturned By New Research." ScienceDaily. ScienceDaily, 18 September 2007. <www.sciencedaily.com/releases/2007/09/070917151054.htm>.
University of Washington. (2007, September 18). Accepted Notion Of Neutron's Electrical Properties Overturned By New Research. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/09/070917151054.htm
University of Washington. "Accepted Notion Of Neutron's Electrical Properties Overturned By New Research." ScienceDaily. www.sciencedaily.com/releases/2007/09/070917151054.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins